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Targeted protein degradation:  
A novel therapeutic strategy for 
neurodegenerative diseases

Introduction

Neurodegenerative diseases are a heterogenous group 
of disorders that involve impaired brain function and 
dysfunction and loss of neurons.1,2 Despite being an 
active area of research, developing treatments for 
neurodegenerative diseases has been challenging. For 
example, the low permeability of the blood–brain barrier 
can restrict or block access of therapeutics to the central 
nervous system and target site. And, even if drugs can 
reach the correct site, target proteins associated with 
neurodegenerative diseases can have limited druggability.3 
These challenges have led to high failure rates in 
neurodegenerative disease drug development, with no 

disease-modifying treatments currently available.4,5 With 
aging populations, the number of people affected by 
neurodegenerative diseases is predicted to keep growing 
(Figure 1), emphasizing the urgent need to find new and 
effective strategies to treat neurodegenerative diseases.6

While neurodegenerative diseases are a heterogenous group 
of disorders, a common characteristic is the accumulation of 
misfolded or aggregated proteins, such as in:2,8

• Alzheimer’s disease – Alzheimer’s disease is linked with 
multiple protein abnormalities in the brain, such as 
accumulation of amyloid-β peptides (forming plaques) and 
hyperphosphorylation and accumulation of tau proteins 
(forming neurofibrillary tangles or NFTs). People affected 
by Alzheimer’s disease can display a range of symptoms, 
including cognitive dysfunction and psychiatric and 
behavioral symptoms—such as aphasia  
and hallucinations.9–11

• Parkinson’s disease – Parkinson’s disease is linked 
with neurons accumulating misfolded and aggregated 
α-synuclein (which can form Lewy bodies and Lewy 
neurites).12,13 Parkinson’s disease involves a loss of 
neurons and affected individuals can display a range of 
motor and non-motor symptoms, such as bradykinesia, 
rigidity, pain, and depression.14

• Huntington’s disease – Huntington’s disease involves 
abnormal and aggregated forms of the huntingtin protein 
in brain cells. Huntington’s disease is an autosomal 

Figure 1. Graph showing increasing estimates of people affected 
by Alzheimer’s disease each year, from 2020 to 2060.7 Source: 
https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.12362. 
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dominant inherited condition caused by expanded 
cytosine-guanine-adenine (CAG) repeats in exon 1 of the 
huntingtin gene. The increased number of CAG repeats in 
the huntingtin gene leads to an extended polyglutamine 
(polyQ) tract, causing the protein to misfold and 
accumulate in the nucleus and cytoplasm of neurons. 
This aggregation and accumulation of mutated huntingtin 
protein leads to neuronal loss, with affected individuals 
displaying impaired motor and cognitive function, as well 
as psychiatric symptoms.15–18

A promising and innovative therapeutic approach to 
neurodegenerative disease is targeted protein degradation 
(TPD), which recruits cell degradation machinery to 
selectivity degrade a target protein—such as misfolded, 
aggregated, or abnormal forms of tau, α-synuclein, 
or huntingtin. TPD offers advantages for treating 
neurodegenerative disease over traditional methods, such 
as small molecule inhibitors. For example, TPD is able to 
act on protein targets that were traditionally undruggable – 
such as α-synuclein and tau and aggregate forms of proteins 
– broadening the protein targets that can be acted on.19 

TPD agents (or degraders) destroy the protein, blocking all 
functions of the protein—unlike inhibitors, where proteins 
can still perform functions/interactions outside the inhibited 
site.20 And, unlike gene therapy approaches, TPD can also 
act on proteins that are linked to disease through abnormal 
post-translational modifications. Here, we explore TPD 
as a neurodegenerative disease therapeutic, including its 
applications and limitations.

Mechanisms of targeted protein 
degradation

TPD degrades target proteins by exploiting cell degradation 
systems, such as through proteasomal or lysosomal 
degradation. Proteasomal degradation involves the 
ubiquitin–proteasome system (or UPS), where ubiquitin is 
attached to a lysine residue on a target protein through 
sequential action of three enzymes: E1 ubiquitin-activating 
(E1) enzymes; E2 ubiquitin-conjugating (E2) enzymes; and 
E3 ubiquitin (E3) ligases (see Figure 2).22–24 TPD degraders 
often recruit or interact with E3 ligases, with the two most 
targeted E3 ligases being cereblon and von  
Hippel-Lindau (VHL).25–27

As ubiquitin also contains lysine (K) residues accessible for 
ubiquitination, multiple ubiquitin molecules can be linked 
together to create ubiquitin chains (polyubiquitination). The 
diversity in ubiquitin chain structures or ‘tags’ can signal 
for different cellular processes, such as degradation by the 
proteasome (K48-linked polyubiquitination) or the lysosome 
(K63-linked polyubiquitination).28

Autophagy–lysosome pathway 

The autophagy–lysosome system (or ALS) is another major 
cellular degradation system that can handle longer-lived 
proteins, as well as larger structures (such as aggregated 
proteins and organelles).29 The autophagy–lysosome 
system relies on material being delivered to the lysosome 
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Figure 2. Overview of protein ubiquitination in ubiquitin–proteasome system. E1 enzymes recruit and activate ubiquitin, where ubiquitin is 
transferred to E2 enzymes. Ubiquitin is then attached to lysine residues on target proteins via E3 ligases either by direct transfer, where an E3 
ligase recruits the target protein and E2 ligase allowing direct transfer of the ubiquitin to the protein; or by indirect transfer, where ubiquitin is 
transferred from E2 to the to the active site of the E3 ligase, before then being conjugated to the target protein.24
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for degradation and can be split into three major forms13: 
macroautophagy, microautophagy, and chaperone-mediated 
autophagy. Macroautophagy involves material being 
enclosed by a double-membraned vesicle (autophagosome), 
which fuses with the lysosome for degradation (Figure 3).29

Macroautophagy relies on a variety of proteins, such as:

• ULK1 — a serine/threonine kinase that – through a 
ULK1 complex (ULK1/ATG13/FIP200/ATG101) – initiates 
autophagy, promoting phagophore formation.30,31

• LC3 — a protein that can be conjugated to 
a lipid found on autophagasome membranes 
(phosphatidylethanolamine), forming LC3-II.32

• p62/SQTM1 — an autophagy receptor that can bind 
to ubiquitinated proteins and LC3-II, helping recruit 
degradation material to the autophagasome.33

The lysosome can also receive material for degradation 
from other routes, such as the endosome–lysosome 
pathway, where extracellular, cell surface, or membrane 
material can be endocytosed and delivered to the lysosome 
via a series of endosomes.34 

Key technologies

A wide variety of degraders have been developed that 
trigger proteasomal or lysosomal degradation of target 
proteins (Figure 4). PROTACs (proteolysis targeting chimeras) 
are heterobifunctional compounds that have a target 
protein-binding domain and an E3 ligase-binding domain. 
PROTACs bind to both the target protein and the E3 ligase, 
bringing the E3 ligase within close enough contact to 

ubiquitinate the target protein, signaling for degradation of 
the target protein via the proteasome.35 Molecular glues 
are another group of TPD agents being explored. Molecular 
glues bind to and modify the surface of a protein (such as 
the E3 ligase or target protein), allowing new interactions 
between the two proteins to occur—which can stabilize 
or strengthen binding between these proteins.36 Molecular 
glues can form complexes between an E3 ligase and target 
protein to allow ubiquitination of the target protein and – 
consequently – degradation by the proteasome.20

In addition, TPD technologies that act through lysosomal 
degradation are also gaining traction and may be a 
promising approach for treating neurodegenerative 
diseases—particularly as the lysosome can degrade 
aggregated and extracellular proteins.37 For example, 
ATTECs (autophagosome-tethering compounds) involve a 
domain that binds to the target protein and a domain that 
binds to LC3 (found on the phagophore and autophagosome 
membranes). Consequently, ATTECs link the target protein 
to the phagophore via LC3, allowing the target protein to 
be degraded through the autophagy–lysosome system.38

In addition, AUTACs (autophagy-targeting chimeras) also 
act through the autophagy–lysosome system and involve a 
structure that binds to the target protein and a structure – 
or ‘degradation tag’ – that recruits autophagy machinery. 
The degradation tag leads to K68-linked polyubiquitination 
of the target protein, which signals for transport to the 
autophagosome and degradation of the target protein via 
the autophagy–lysosome system.35,39 

Techniques have also been developed to act on the 
endosome–lysosome pathway, such as LYTACs (lysosome-

Figure 3. Overview of macroautophagy.
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targeting chimaeras). LYTACs have a structure that binds to 
a target membrane or extracellular protein and a structure 
that binds to lysosome-targeting receptor.36,37 By forming 
a complex with the target protein and lysosome-targeting 
receptor, LYTACs allow target proteins to be delivered to 
the lysosome for degradation through endocytosis.37 

Applications in neurodegenerative diseases

TPD had been investigated as a method of destroying 
disease-linked proteins (Figure 5) in a range of preclinical 
and clinical studies for neurodegenerative diseases, 
with approaches facilitating proteasomal or lysosomal 
degradation.40 Below we explore TPD approaches under 
investigation in the literature, focusing largely on Alzheimer’s 
disease, Parkinson’s disease, and Huntington’s disease.

Alzheimer’s disease 

A variety of preclinical studies have investigated TPD 
strategies to target and clear multiple disease-linked 
proteins in Alzheimer’s disease, such as tau, amyloid-β, 

and GSK-3β proteins. For example, Chu et al. designed 
a series of PROTAC degraders that targeted tau protein 
and recruited either the VHL (von Hippel-Lindau tumor 
suppressor protein) or SCF (Skp1-cullin-F box) E3 ligases, 
promoting ubiquitination and proteasomal degradation of 
tau proteins. The most effective tau-degrading compound 
was TH006, which reduced intracellular tau levels in vitro
and in vivo (in an Alzheimer’s disease mouse model). These 
reduced Tau levels were found to lower the cytotoxicity 
effects of amyloid-β.41 Wang et al. also designed a PROTAC 
(C004019) that recruits the VHL E3 ligase for proteasomal 
degradation of tau proteins. C004019 was found to 
effectively degrade tau proteins in vitro and in mouse 
models, reducing cytotoxicity triggered by amyloid-β and 
improving “synaptic and cognitive functioning”.42  GSK-
3β – a serine/threonine protein kinase that can increase 
phosphorylation of tau and amyloid-β levels – has also been 
targeted by TPD. For example, Guardigni et al. developed 
PROTACs that recruit cereblon (CBRN) E3 ligase for 
ubiquitination and proteasomal degradation of GSK-3β. One 
of the compounds (compound 1) – a potent and selective 
inhibitor of GSK3-β linked to pomalidomide – was able to 
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Figure 4. Overview of example degraders that facilitate degradation of target proteins through the UPS or the ALS, such as A) PROTACs; B) 
molecular glues; C) ATTECs; and D) AUTACs.
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et al. designed an innovative multicomponent LYTAC-
based structure (KPLY) that targets extracellular amyloid-β
aggregates for lysosomal degradation. Once KPLY reaches 
an Alzheimer disease lesion area, the degrader (cli-LYTAC) 
is generated in situ—as inactive precursors are activated 
by Cu that gathers in amyloid-β plaques. Cli-LYTACs then 
deliver extracellular amyloid-β aggregates to the lysosomal 
shuttling receptor: CD206, where the amyloid-β aggregates 
are internalized through endocytosis and delivered to 
the lysosome for degradation. Cli-LYTACs were found 
to selectively degrade amyloid-β aggregates. In addition, 
KPLY had anti-oxidative properties which can help trigger 
microglia to transition into an M2-like phenotype, increasing 
lysosome targeting receptor levels—which enhances 
amyloid-β lysosomal degradation.44

Parkinson’s disease

With misfolded and aggregated forms of α-synuclein playing 
a role in Parkinson’s disease, a variety of TPD approaches 
have been investigated to target α-synuclein. For example, 
Jin et al. developed a peptide-based degrader (Tat-α 
syn-degron) that triggers proteasomal degradation of 
α-synuclein. The degrader involves Tat, which helps the 
structure pass through the blood–brain barrier and cell 
membranes; a beta-synuclein derivative, which binds to 
α-synuclein; and degron, which signals for proteasomal 
degradation.45,46 Tat-αsyn-degron was found to reduce 
α-synuclein levels in vitro and in vivo (in two Parkinson’s 
disease mice models)—with a reduction in spread 
between cells.45 

Degraders that recruit lysosomal degradation may be 
advantageous as lysosomal degradation can handle 
oligomeric and aggregated forms of α-synuclein, which 
are linked with Parkinson’s disease pathology.47 Lee et al. 
developed an α-synuclein AUTOTAC degrader (ATC161), 
which relies on macroautophagy for degradation of 
alpha-synuclein. ATC161 involves a structure that binds 
α-synuclein and a structure that binds the autophagic 
receptor p62/SQSTM1/Sequestosome-1, leading to 
degradation of α-synuclein via the autophagy–lysosome 
system. ATC161 was found to effectively degrade 
α-synuclein aggregates in vitro and in vivo (using a 
Parkinson’s disease mouse model). ATC161 also reduced 
spread of alpha-synuclein aggregates between cells, the 
glial cell immune response, and motor symptoms in mice.47

Other protein targets are also being investigated in 
Parkinson’s disease TPD research, such as leucine-

Figure 5. Overview of example proteins targeted in TPD research 
for A) Alzheimer’s disease; B) Parkinson’s disease; and C) 
Huntington’s disease.

effectively degrade GSK-3β in SH-SY5Y cells and reduce 
cytotoxicity effects induced by amyloid-β and Cu2+.43 

Lysosomal degradation-based TPD approaches have also 
been explored for Alzheimer’s disease. For example, Liu 
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rich repeat kinase 2 (LRRK2)—which is a protein linked 
to Parkinson’s disease and other disorders, such as 
progressive supranuclear palsy.48 Liu et al. designed an 
LRKK2 PROTAC degrader (XL01126), which binds LRKK2 
and VHL, triggering ubiquitination and degradation of 
LRKK2 via the proteasome. XL01126 effectively degraded 
LRKK2 in multiple cell lines and was found to be an orally-
available structure that can cross the blood–brain barrier 
in mice—providing promising findings that warrant further 
in vivo investigation (which the authors note is ongoing).49 
The potential of LRKK2 as a target for TPD in Parkinson’s 
disease has been further highlighted by Arvinas, who 
have recently begun a phase I clinical trial for their LRKK2 
PROTAC degrader (ARV-102). The phase I clinical trial will 
assess the safety profile of ARV-102 in healthy individuals.50 

Huntington’s disease

Both proteasomal- and lysosomal-based TPD approaches 
have been explored in Huntington’s disease. For example, 
Tomoshige et al. developed two inhibitors of apoptosis-
based PROTACS – also known as SNIPERs (specific and 
nongenetic IAP-dependent protein erasers) – to target 
mutant huntingtin protein for proteasomal degradation. The 
two SNIPERs involved a structure that binds to the cellular 
inhibitor of apoptosis protein 1 (cIAP1) E3 ligase (bestatin) 
linked to a structure that binds to mutant huntingtin-binding 
domain (involving BE04 attached to BTA for compound 1 
or PDP for compound 2). Both compounds were able to 
effectively degrade mutant huntingtin in patient fibroblasts, 
with compound 1 also capable of handling mutant huntingtin 
proteins that had long polyQ repeats and aggregates of 
huntingtin with long polyQ repeats.51 In addition, both 
Arvinas and Origami Therapeutics are developing mutant 
huntingtin PROTAC degraders.52,53

Degraders recruiting autophagic systems have also been 
investigated for Huntington’s disease. Lin et al. developed 
four mutant huntingtin ATTEC degraders, which are 
structures that contain a mutant huntingtin-binding domain 
and an LC3-binding domain. Consequently, the ATTEC 
recruits mutant huntingtin to the phagophore (via binding 
to LC3), allowing degradation of mutant huntingtin through 
macroautophagy. These mutant huntingtin ATTEC degraders 
were found to effectively degrade mutant huntingtin 
levels in vitro, with no effect on wild type huntingtin—an 
important aspect of Huntington’s disease therapeutics 
as wildtype huntingtin is needed for a variety of cellular 
processes. The degraders were also capable of reducing 
mutant huntingtin levels in animal models (fly and mouse) 

in vivo, with treatment providing benefits to animals, such 
as reducing apoptosis of neuronal cells and improving 
motor symptoms.54 In addition, Bauer et al. designed a 
degrader that triggered degradation of mutant huntingtin 
via chaperone-mediated autophagy. The multicomponent 
degrader involved two copies of a structure that bound 
to mutant huntingtin (polyglutamine binding peptide 1 or 
QBP1) and copies of two different structures that bound 
to the chaperone protein: heat shock cognate protein 
70 (HSC70). The degrader (QBP1-HSC70bm) effectively 
degraded mutant huntingtin without affecting wild type 
huntingtin levels in vitro and in vivo (using a Huntington’s 
disease mouse model)—the degrader was delivered in 
vivo using viral particles. In vivo experiments showed that 
degrader treatment provided benefits in mice, such as 
reducing mutant huntingtin aggregation and improving motor 
symptoms.55

Other neurodegenerative disorders:

Other neurodegenerative disorders, such as amyotrophic 
lateral sclerosis and frontotemporal dementia, are also 
associated with misfolded or aggregated proteins, which 
has led researchers to target these diseases using TPD. 
For example, Tseng et al. developed a PROTAC degrader 
to target TDP-43 (TAR DNA Binding Protein 43 kDa) in 
amyotrophic lateral sclerosis. TDP-43 is a hallmark of 
amyotrophic lateral sclerosis, with TDP-43 found in 
cytosolic aggregates in most ALS cases—and nearly half 
(around 45%) of frontotemporal dementia cases.56 Tseng et 
al. designed four PROTAC degraders (termed PROTAC1–4) 
to target C-terminal TDP-43 oligomers and aggregates. 
PROTAC2 was found to effectively degrade C-terminal 
TDP-43 aggregates in vitro and in vivo (using transgenic C. 
elegans), showing selectivity for misfolded TDP-43. This in 
vivo reduction of C-terminal TDP-43 aggregates was also 
found to improve motility in C. elegans.57 

Aggregates of hyper-phosphorylated tau are associated 
with frontotemporal dementia (as well as Alzheimer’s 
disease and progressive supranuclear palsy). Silva et al. 
designed a tau PROTAC degrader (QC-01-175) that had 
a tau-binding domain (based on the positron emission 
tomography tracer: T807) linked to a cereblon-binding 
domain (pomalidomide) to trigger proteasomal degradation 
of phosphorylated tau proteins. The degrader reduced 
aggregates in in vitro neuronal cell models (cells derived 
from frontotemporal dementia patients) and had no effect 
on tau in healthy controls.58
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TPD challenges, limitations, and outlook

While TPD has huge potential as an effective 
neurodegenerative disease treatment approach, TPD can 
face a number of challenges and limitations. Depending on 
the degrader system, these challenges can span selectivity, 
stability, off-target effects, and delivery. 

Delivery and stability

The wide selection of degrader systems and structures 
holds promise for finding new treatment strategies 
for neurodegenerative diseases. However, these new 
structures can be complex and have unknown, unfamiliar, 
or undesirable drug profiles.59 For example, complex and 
high molecular weight degraders can have poor solubility 
and stability, as well as poor penetrance across cell 
membranes and the blood–brain barrier.60 The blood–brain 
barrier – with its tightly packed cells and efflux systems 
– restricts access of compounds to the central nervous 
system and is a major hurdle facing successful delivery 
of drugs in neurodegenerative diseases.61 And the high 
molecular weight and polar nature of some degraders can 
lead to these structures having poor permeability across the 
blood–brain barrier.59 This poor bioavailability and stability 
can lower efficacy of a degrader as the degrader can be 
cleared from the body too quickly or not reach the target 
region in sufficient quantities. However, as well as ensuring 
adequate delivery and sufficient levels to the target site, 
degraders such as PROTACs must be optimized for dosing 
levels. If degrader levels are too high, degrader–target 
protein or degrader–E3 ligase complexes can form, reducing 
degradation efficacy.60 

Selectivity and off-target effects 

Degraders may act on non-target proteins, which can 
damage normal cell functioning and create off-target 
effects. In addition, only a small selection of the ca. 600 
E3 ligases in humans are commonly targeted in TPD 
research. With E3 ligase expression varying in the body and 
degradation efficiency/capability dependent on successful 
E3 ligase–target protein–degrader complexes forming, 
using only a small selection of the E3 ligase pool can limit 
the application of where a degrader can act effectively 
and what disease it can treat. For example, levels of a 
commonly used E3 ligase, cereblon, can vary across 
different regions of the brain, impacting selectivity of  
the degrader.61 

 

Outlook

Advances in technology to better characterize degraders 
and their interactions may aid development and 
identification of effective degraders that have good drug 
profiles and can reach target sites in desired levels. For 
example, Zhang et al. developed a proteomic platform to 
reveal off-target protein interactions with systems such 
as PROTACs, which could help better identify off-target 
interactions.62  Studies are also ongoing to find ligands to 
recruit unused or underexplored E3 ligases, which will 
hopefully help expand the use of TPD in neurodegenerative 
disease. In addition, variable E3 ligase expression may offer 
an advantage in terms of selectivity and side effects. By 
identifying E3 ligases that are specific or highly expressed 
in target cells/diseased areas, researchers could improve 
the selectivity by designing degraders that act in a specific 
location or cell type.59 For example, RNF182 levels were 
found to be higher in the brain tissue of Alzheimer  
disease patients.63

Exploring alternative delivery routes may help overcome 
the limitations of some degraders in removing bioavailability 
limitations and the hurdle of crossing the blood–brain 
barrier.59 In addition, solubility of degraders could be 
improved by considering the design of the degrader—such 
as developing effective linkers that help balance lipophilicity 
(for membrane permeability) and hydrophilicity  
(for solubility).61,64  

Advancing neurodegenerative disease 
research with no-wash immunoassays

Revvity provides a comprehensive range of HTRF 
and AlphaLISA cell-based detection assays (Table 1), 
empowering neurodegenerative disease research. Our 
solutions enable precise quantification of target proteins, 
facilitating the identification of targeted protein degraders in 
research samples.
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Conclusion

TPD offers huge potential as an approach to treat 
neurodegenerative diseases—as emphasized by the 
array of promising preclinical studies in a range of 
neurodegenerative diseases and Arvinas’ ARV-102 PROTAC 
that has recently begun phase I clinical trial investigation. 
TPD also improves on conventional treatments, such as 
being able to act on “undruggable” proteins and ablating 
all functions of a protein. Notably, TPD degraders that use 

lysosomal degradation can address aggregated proteins, 
which are common in various neurodegenerative diseases. 
Advances in technology and degrader design hope to 
overcome some of the challenges and limitations facing 
current degrader development, such as better identifying 
off-target effects through proteomic platforms and 
improving drug profile by incorporating linkers that can 
improve solubility and cell membrane/blood–brain barrier 
permeability. A better understanding of the underlying 
mechanisms that cause disease and cell death would also 
improve development of therapies.58
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