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A cellular imaging and machine 
learning approach to drug discovery

Cell painting – Phenotypic drug 
discovery re-imagined

Introduction

The paradigm of drug discovery is now shifting, following 
the once-declining number of new molecular entity (NME) 
registrations – as expressed in Eroom’s law which states 
that over 60 years, irrespective of the advancement 
of technologies, it had become much more expensive 
and slower to bring new therapeutics to market.1 Better 
stratification of human diseases, intelligent experimental 
design using more predictive model systems for compound 
screening and profiling, and the aid of improved 
computational biology are helping to circumvent Eroom’s 
law, as observed from the past decade of FDA NME 
approvals.2 It is also the reason why computational and 
digital biology are being heavily explored and invested‑in 
by new start-up companies, industry, academia, and 
government. The observation by Swinney that first-in-class-
drugs were frequently discovered by phenotypic approaches 
may explain why phenotypic drug discovery is gaining 
traction over traditional target-based screening approaches.3

Cell Painting is considered a phenotypic screening method 
and a powerful application of high-content screening 
technology which combines cell and computational biology 
to elucidate the behavior of cells under the influence of 
perturbagens, such as chemical compounds, drugs, genes, 
or other entities affecting the cell.

Defining cell painting

The first iteration of Cell Painting, without naming it as 
such, was published in a 2013 paper by Gustafsdottir and 
colleagues at the Broad Institute of Harvard and MIT.4 
The assay was then slightly modified into its current 
configuration by Bray and colleagues, who coined the term 
“Cell Painting”, in a 2016 publication that describes the 
process in detail.5 Cell Painting is not only being used to 
identify potential new therapeutics and assess human gene 
function,6 it has also been applied to the assessment of 
environmental toxicants by Nyffeler and colleagues at the US 
Environmental Protection Agency (EPA).7 

Publication author

Joe Trask 
Revvity, Hopkinton, MA, USA



A cellular imaging and machine learning approach to drug discovery

2www.revvity.com

Figure 1. Successful Cell Painting requires careful consideration of experimental design, reagents, consumables, imaging hardware, and 
imaging and analysis software.

Cell Painting is a multistep process in which cells are “painted” 
by labeling different cellular compartments with different 
fluorescent bioprobes to quantitatively profile multiple 
phenotypic parameters as a means to better understand 
the effects of chemical compounds, drugs, genes, or other 
test articles. 

The process is dependent on the use of known reference 
compounds to “train” image analysis algorithms to generate 
multiparametric data that is subsequently filtered using 
machine learning approaches to reduce the overall complexity 
of the multidimensional data. 

At a high-level, the process of Cell Painting incorporates 
high-throughput robotics and automation to seed cells 
and deliver compounds to microplates, the use of multiple 
fluorescent bioprobes to tag cell compartments, acquisition 
of images, image analysis, and machine and deep learning 
data analysis tools to enrich and summarize findings of 
complex multidimensional data.

The highly-dimensional data is displayed using tools such as 
PCA (Principal Component Analysis) or t-SNE (t-Distributed 
Stochastic Neighbor Embedding) that allow for clustering of 
similar phenotypic profiles that may “suggest” a mechanism 
or mode of action (MOA) for unknown compounds by 
comparison with reference compounds of known MOA.
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Cell models

In the publications by Gustafsdottir and Bray, U-2 OS 
(human bone osteosarcoma epithelial) cells were the cell 
line of choice for the Cell Painting assay. U-2 OS cells are 
highly desirable for this application, since they are available 
commercially and are compatible with high-content imaging 
approaches. A U-2 OS cell displays a “fried-egg”-like 
morphology with a slightly raised nucleus and a large flat 
cytoplasmic area. This is a unique characteristic of U-2 
OS cells and since, under normal conditions, the cells do 
not typically aggregate with one another, the nuclear and 
cytoplasmic markers can be readily identified and robustly 
segmented in high-content image analysis.

More than 13 different cell types are cited in the literature 
in Cell Painting applications including the commonly-known 
HCS-compatible cells: A549, HEK-293, HeLa, HepG2, 
HTB-9, MCF-7, SH-SY5Y, and the mouse cell line NIH-3T3. 
In addition, primary human cells, cell lines that closely 
resemble the disease of interest, stem cells and co-culture 
models such as HepatoPac® are being evaluated for Cell 
Painting. More recently Willis and colleagues characterized 
the Cell Painting phenotypic outcomes across six different 
cell lines that includes A549, ARPE-19, HepG2, HTB-9, 
MCF7, and U-2 OS.8

For Cell Painting, the chosen cells are typically seeded into 
microplate wells (96-, 384- or 1536-well plates) and incubated 
(37 °C, 5 % CO2, > 90 % RH) overnight (18 - 24 hours) at a 
cell density pre-determined during the assay development 
process. The cells are then treated with the desired test 
article (chemical compound, drug, siRNA, protein, etc.) plus 
known reference compounds for subsequent processing 
and analysis. Cells are typically treated for 24 - 96 hours, 
however, this may vary from minutes in a fast-kinetic assay to 
several days in longitudinal studies.

Drug, compound or perturbagen dosing

Cell Painting requires a subset of known reference 
compounds to be used as a “training set” to teach the 
machine learning algorithms how to classify perturbagen 
responses during secondary data analysis and is highly 
dependent on the modification by the reference control 
compounds of the bioprobe markers used in the experiment. 
Therefore, determination of the effects of the known reference 
compounds in advance of the screen is of utmost importance.

The number and diversity of compounds in the screening 
library, or other materials used to perturb the cells, is a 
critical consideration. A high number of test articles alone 
may not provide the desired outcome, rather the choice of a 
diverse spatial bioactivity compound set should improve the 
algorithms for clustering and identifying compound classes.

Since the Cell Painting assay is considered a phenotypic 
assay, identification of reference compounds that 
selectively target and modify the response detected by 
the bioprobe markers is highly desirable and compound 
selection will determine the overall strength of the 
model to cluster perturbagen responses appropriately. 
While some compounds directly target only a single cell 
compartment, e.g. the topoisomerase-II inhibitors etoposide 
and doxorubicin, or the mitochondrial uncoupler, carbonyl 
cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), other 
compounds such as staurosporine, which is considered 
a non-specific broad-base kinase inhibitor, have a direct 
impact on several cellular functions and compartments, 
e.g. nuclear morphology, cell cycle, nucleic acids, cell health, 
mitochondria and cytoskeleton structure, dependent on time 
and dose.9 These types of reference tool compounds are 
useful for training the algorithms to evaluate unknowns in a 
screening campaign.

There are several methods available to deliver compounds 
to cells via automated, robotic liquid handling devices and 
can include delivery by pipette, pin-tools, or even acoustic 
“echo” dispensing. Critical considerations in compound 
dosing include the stability and solubility of each compound 
in its final concentration.

Selecting cell paints

Following treatment with perturbagens, the cells are 
“painted”, i.e. labeled or stained, with the chosen bioprobes. 
In the early Cell Painting papers (Gustafsdottir and Bray), 
dyes were specifically chosen to minimize the cost of labeling 
while profiling as many cellular characteristics as possible. 
This raises the question of whether these commonly used, 
commercially-available dyes, probes, and other markers are 
representative of the biology or disease. If the HCS feature 
measurements do not adequately cover the full extent of the 
predicted disease-model outcomes, then the selection of the 
multiplex probe set in the experimental design may require 
modification and replacement with new probes to properly 
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Figure 2. Cell Painting bioprobe markers in U-2 OS cells seeded in CellCarrier-384 Ultra (now named PhenoPlateTM) microplates, images 
captured with 20xW objective lens on the Opera Phenix® high-content screening system. (A) Nucleus, Hoechst 33342; (B) Endoplasmic 
reticulum, Concanavalin A - AlexaFluorTM 488; (C) Nucleoli and cytoplasmic RNA, SYTOTM 14; (D) Golgi and plasma membrane, Wheat Germ 
Agglutinin - AlexaFluorTM 555; (E) Actin, phallodin - AlexaFluorTM 568; (F) Mitochondria, MitoTrackerTM Deep Red.

A B D E FC

capture the full extent of the biology. In target-based 
screening, probes are intended to directly visualize the target 
or its immediate effects but, in phenotypic drug discovery, 
choosing bioprobes to maximize coverage of the range of 
characteristics may be enough for training the machine 
learning algorithms for the desired outcomes.

In the current Cell Painting experimental design, six 
fluorescent probes are used to target specific cell 
compartments to determine protein expression or signaling 
pathways, to identify organelles and their function, or 
identify whole-cell morphology (Figure 2). In their efforts to 
minimize the cost and time for higher throughput screens, 
the bioprobe panels described by Gustafsdottir and Bray 
do not include antibody markers. However, this should not 

deter HCS imaging practitioners from implementing antibody 
labeling approaches in a Cell Painting panel of their own 
for a more in-depth assessment of expression of biological 
proteins, or pathways, not covered by the previously 
published bioprobe panels.

An extension of the Cell Painting assay by Nyffeler 
and colleagues used duplicate microplates with the 
supplementary probes Hoechst 33342 and propidium iodide 
as a means of identifying cytotoxic compounds in addition 
to the classical Cell Painting measurements to gain further 
insight into the biology. The caveat with duplicate microplates 
with the same compound treatment is that cell‑to-cell 
measurements cannot be directly correlated, but whole-well 
means of the cell population response are retained.

Perhaps the next generation of Cell Painting probes and 
approach is being introduced by Kang and colleagues, 
termed “Fluopack” and comprising a panel of 44 different 
fluorescent bioprobe markers weighted towards covering 
biological phenotypes in this order: lipid function, ion 
concentrations, organelle morphology, pH sensors, ROS, 
mitochondria function, cell death, and drug conjugates.10 
In the study, both wildtype parental cells and CRISPR 
knockout cells are seeded in the same microplate with only 
one bioprobe per well and imaged with a 60x objective 
lens. The advantage of this method is a broader coverage 
of biological activity, and a reduction of interference and 
spectral crosstalk from multiple fluorescent probes during 
image acquisition; the disadvantage is the requirement for 
additional plates or wells to cover all probes used and loss 
of cell-to-cell measurements. Kang, et al., claim to have 
expanded from 44 up to 170 different fluorescent markers 
in the panel, thus increasing the coverage of biological 
response per compound treatment.

Bringing cell paints to life through image 
acquisition

Images of labeled cells are generated with a high-throughput 
microscopy system (HCS imager) which independently 
captures each bioprobe. Image acquisition is either 
conducted sequentially per fluorescent probe with different 
exposure times or simultaneously if the HCS instrument is 
equipped with multiple camera detectors. While there are 
six fluorescent probes with significant spectral overlap in 
the Cell Painting assay, only four or five different fluorescent 
channels are used to detect the fluorescent signals due 
to the optical filter configuration on most HCS imagers. 
To overcome this dilemma, the spatial localization in x, 
y and z dimensions of each bioprobe inside the cell is 
used to separate the endpoint measurement when two 
fluorescent probes with similar spectra properties are in 
close proximity to one another, for example, SYTO™ 14, a 
nuclei acid dye which binds and localizes to the nucleus 
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and Concanavalin A conjugated to Alexa Fluor™ 488 
(ConA-AF488) which localizes to the cytoplasm and 
membrane. Modifications of the Cell Painting probes 
are being implemented in laboratories in efforts to best 
characterize a disease state or are tailored for detection 
on an HCS imaging device.

One of the biggest questions from HCS scientists is how to 
handle the narrow separation of the spectral properties 
of multiple fluorescent bioprobes, particularly two pairs, 
SYTO™ 14 and ConA-AF488 or WGA-Alexa Fluor™ 555 and 
F-actin Phalloidin-Alexa Fluor™ 568 (Figure 3).

A

B

HO342 AF488 SYTO 14 AF555 AF568 MTDR

HO342 1 0.33 0.29 -0.28 -0.35 -0.32

AF488 0.33 1 0.85 -0.26 -0.51 -0.38

SYTO 14 0.29 0.85 1 0.14 -0.34 -0.52

AF555 -0.28 -0.26 0.14 1 0.52 -0.06

AF568 -0.35 -0.51 -0.34 0.52 1 0.12

MTDR -0.32 -0.38 -0.52 -0.06 0.12 1

Figure 3. (A) Emission wavelengths of fluorescent probes used in 
Cell Painting panel. Hoechst 33342 (HO342), Alexa FluorTM 488 
(AF488), SYTOTM 14, Alexa FluorTM 555 (AF555), Alexa FluorTM 
568 (AF568) and MitoTrackerTM Deep Red (MTDR). (B) Pearson 
correlation coefficient matrix showing the theoretical spectral 
similarities and differences of bioprobes used in Cell Painting 
assay: r=1.0 is perfect correlation; 0.5 shows 50% correlation;  
< 0 no correlation.

Painting by numbers – image analysis 
segmentation

In Cell Painting, image segmentation is used to identify 
unique properties of individual cells that result in feature 
measurements with an associated numerical value derived 
from the image pixel information.

These feature measurements at the single-cell level are 
averaged per well and include cell morphology such as size, 
shape and texture, intensity of the bioprobe marker or even 
dynamics e.g. cell motility or redistribution of proteins in live 
cells. A subset of these higher-level features can provide 
additional information depending on the algorithm that is 
employed. For example, the length or width of an object, 
length-width ratio of the cell object, how circular, compact, 
or amorphous the cell shape is, the granularity of the texture 
measurement, or the variability in intensity across an area, 
and numeration of object counts, spots, or other pixel 
regions making up an area, or even a Boolean calculation of 
one or more of the measured image properties and in some 
cases, population and subpopulations of the response can 
be measured, which is especially useful in heterogeneous 
cell models or in mixed co-culture systems.

Multiplying the number of possible measurements from the 
images by the number of fluorescent biomarker probes 
per cellular compartment and any subpopulations quickly 
expands the list of potential features for analysis. In most 
cases, mean average or total well-level information from one 
or more fields is calculated from the single-cell level data.

A typical phenotypic screen in its simplest form creates a few 
dozen measurements with 10 - 15 of these features used in the 
analysis, however reporting the full extent of an image analysis 
algorithm output can easily be extended by multiple texture, 
morphology and other advanced image analyses, to generate 
hundreds or thousands of features in a Cell Painting assay.

Every picture tells a story – data analysis, 
machine learning and visualization

HCS imaging scientists must determine which of the many 
generated features to use in the subsequent data analysis 
to report the findings. In the early days of HCS imaging 
20 years ago, only one or two features were used to profile 
the responses to drugs or compounds, quite similar to 
HTS plate reader assays.11 As the HCS community moves 
to analyze large multivariate data sets, they face the 
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challenge of interpreting the full breadth of all the high 
content imaging data that is generated in the Cell Painting 
assay – which can equate to thousands of features. It is a 
daunting task for any human to fully comprehend dozens, 
et  al one hundreds or even thousands, of independent HCS 
generated features, therefore the use of supplementary 
informatics tools is necessary to reduce this multifaceted 
information into something more practical and meaningful. 
A process referred to as “reduction in dimensionality” 
of HCS-generated features helps scientists with both the 
visualization and interpretation of the data.

A commonly-used approach to identify the most relevant 
features among thousands of measurements is determination 
of Z-score. This process alone provides a hierarchical 
filter of every feature based on signal and robustness 
providing rank order for analysis. Z-score filtering may be 
combined with another secondary analysis process called 
Principle Component Analysis (PCA) to analyze the data in a 
multifactorial matrix relationship format, otherwise known as 
multivariate analysis.

In the context of high-throughput microscopy and phenotypic 
screening, PCA was first described by Perlman and 
colleagues in 2004 as a method to analyze HCS data.12 
PCA in its simplest terms reduces the dimensionality of 
complex feature data by using eigenvectors in multiple 
matrix factorial dimensions to correlate similarities and their 
differences. This is visualized by showing compounds or 
perturbagen responses in 3D space as population clusters 
or clouds that have similarities within one another or are 
spatially distinct from other groupings, e.g. the DMSO vehicle 
control cluster will differ from a reference control compound. 
This provides scientists with a visual representation of the 
secondary data analysis that is helpful in predicting similar 
mechanisms or mode of action (MoA) classes; the greater the 
distance apart, the greater the likelihood the perturbagen 
does not exhibit the same mode of action (MoA).

Other statistical measurements that scientists are exploring 
to interrogate the Cell Painting assay include K score, phi 
score, and standardized mean difference.13 In addition, 
classification and segregation of active perturbagen 
responses from a screen may be done with advanced 
classification methods such as Random Forest and 
Mahalanobis Distance. Both methods use analysis and 
training to separate and correlate HCS multivariate analysis.

Self-organizing maps (SOM), sometimes referred to 
as Kohonen or Sammom connection networks, are 

unsupervised machine learning algorithms dependent on 
AI and convolutional or deep neural networks to cluster 
similarities in spatial nodes indicating the strength of the 
profile relationships. SOM’s reduce high dimensional space to 
lower dimensional visualization using cluster nodes and are 
expressed as a two-dimensional projection. Another machine 
learning method that has been adopted to reduce nonlinear 
dimensionality of HCS multivariate analysis is t-distributed 
stochastic neighbor embedding (t-SNE). This method projects 
visualization of neighboring data in a 2D or 3D fashion similar 
to PCA, with nearest points with similarities and distant points 
unrelated, with a probability to predict MoA of compounds 
from screens based on classification and clustering with 
known reference compounds.14

There are many approaches to analyse post image 
segmentation or even deep learning segmentation-free 
multivariate data from a Cell Painting assay. The method 
chosen may result in different outcomes, therefore it is 
important to understand how the analysis is manipulated 
and the importance of validation for the entire 
workflow process.

Conclusion

The Cell Painting approach evokes new ideas and strategies 
for HCS practitioners to identify new drugs and to study 
mechanisms of action (MoA) by leveraging machine learning 
to measure subtle phenotypic changes at the cellular level. 
The newer generation of Cell Painting fluorescent bioprobe 
panels offers great promise to better understand in vitro 
disease models that are essential to further reduce animal 
testing, streamline testing of chemical or biological entities 
for new therapeutics or investigate environmental toxicants. 
Still, as with other high-content screening assays, there is 
inherent bias built into the data from end-user input, and 
the use of supervised and unsupervised machine learning, 
AI, deep learning, CNN, or other computational processing 
needs to be carefully examined to reduce as much bias 
as possible. Cell Painting, although not a new approach 
to phenotypic screening in drug discovery, has invoked 
the use of several analytical tools to effectively analyze 
large amounts of extracted feature data generated from 
an HCS experiment, that may include artificial intelligence 
(AI) or machine learning guidance, to better understand, 
fingerprint, and interpret the data by classifying phenotypic 
profiles to determine MoA to identify new discoveries from 
unknown perturbagens.
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