
revvity

HTRF setup recommendations for PHERAstar *FS* Lamp.

HTRF Europium cryptate donor / red acceptor readout setup recommendations for PHERAstar FS Lamp

PHERAstar FS is equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 665 nm acceptor emissions. The ratio of the two fluorescence intensities 665/620 (acceptor/donor) enables the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

HTRF $^{\text{TM}}$ readout can be achieved by PHERAstar FS after the installation of the HTRF dedicated optical block which includes the optimized excitation and emission filters, the dichroic mirror and the beam splitter. The measurement conditions should then be set up in the instrument software according to the following indications:

Setup		
Optic module	HTRF 337/620/665 Ref.: 906D1	
Energy source	Lamp	
Integration delay (lag time)	60 µs	
Integration time	400 μs	
Number of flashes	300	
Optimal z-pos §	Volume and plate format dependent	

[§]The focal height "z" is automatically calculated according to the plate format and the final working volume dispensed in the plate.

HTRF Terbium cryptate donor / green acceptor readout setup recommendations for PHERAstar FS Lamp

PHERAstar FS is equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 520 nm acceptor emissions. The ratio of the fluorescence intensities 520/620 (acceptor/donor) allows the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

HTRF readout can be achieved by PHERAstar FS after the installation of the HTRF dedicated optical block which includes the optimized excitation and emission filters, the dichroic mirror and the beam splitter. The measurement conditions should then be set up in the instrument software according to the following indications:

Setup		
Optic module	HTRF 337/620/520 Ref.: 1010B1	
Energy source	Lamp	
Integration delay (lag time)	60 µs	
Integration time	400 μs	
Number of flashes	300	
Optimal z-pos §	Volume and plate format dependent	

[§]The focal height "z" is automatically calculated according to the plate format and the final working volume dispensed in the plate.

HTRF Terbium cryptate donor / red acceptor readout setup recommendations for PHERAstar FS Lamp

PHERAstar FS is equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 665 nm acceptor emissions.

The ratio of the fluorescence intensities 665/620 (acceptor/donor) allows the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

HTRF readout can be achieved by PHERAstar FS after the installation of the HTRF dedicated optical block which includes the optimized excitation and emission filters, the dichroic mirror and the beam splitter. The measurement conditions should then be set up in the instrument software according to the following indications:

Setup		
Optic module	HTRF 337/620/665 Ref.: 906D1	
Energy source	Lamp	
Integration delay (lag time)	60 µs	
Integration time	400 μs	
Number of flashes	300	
Optimal z-pos §	Volume and plate format dependent	

[§]The focal height "z" is automatically calculated according to the plate format and the final working volume dispensed in the plate.

www.revvity.com 2

HTRF Europium cryptate donor / red acceptor readout setup recommendations for PHERAstar FS Laser

PHERAstar FS is equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 665 nm acceptor emissions. The ratio of the fluorescence intensities 665/620 (acceptor/donor) allows the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

HTRF readout can be achieved by PHERAstar FS after the installation of the HTRF dedicated optical block which includes the optimized excitation and emission filters, the dichroic mirror and the beam splitter. The measurement conditions should then be set up in the instrument software according to the following indications:

Setup	
Optic module	HTRF 337/620/665 Ref.: 906D1
Energy source	Laser
Integration delay (lag time)	60 µs
Integration time	400 μs
Number of flashes	40
Optimal z-pos §	Volume and plate format dependent

[§]The focal height "z" is automatically calculated according to the plate format and the final working volume dispensed in the plate.

HTRF Terbium cryptate donor / green acceptor readout setup recommendations for PHFRAstar FS Laser

PHERAstar FS is equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 520 nm acceptor emissions. The ratio of the fluorescence intensities 520/620 (acceptor/donor) allows the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

HTRF readout can be achieved by PHERAstar FS after the installation of the HTRF dedicated optical block which includes the optimized excitation and emission filters, the dichroic mirror and the beam splitter. The measurement conditions should then be set up in the instrument software according to the following indications:

Setup	
Optic module	HTRF 337/620/520 Ref.: 1010B1
Energy source	Laser
Integration delay (lag time)	60 µs
Integration time	400 μs
Number of flashes	40
Optimal z-pos §	Volume and plate format dependent

[§]The focal height "z" is automatically calculated according to the plate format and the final working volume dispensed in the plate.

www.revvity.com

HTRF Terbium cryptate donor / red acceptor readout setup recommendations for PHERAstar FS Laser

PHERAstar FS is equipped with a specific optical device, which enables the simultaneous measurement of both 620 nm cryptate and 665 nm acceptor emissions. The ratio of the fluorescence intensities 665/620 (acceptor/donor) allows the calculation of Delta F (%) which represents the relative energy transfer rate for each sample.

HTRF readout can be achieved by PHERAstar FS after the installation of the HTRF dedicated optical block which includes the optimized excitation and emission filters, the dichroic mirror and the beam splitter. The measurement conditions should then be set up in the instrument software according to the following indications:

Setup		
Optic module	HTRF 337/620/665 Ref.: 906D1	
Energy source	Laser	
Integration delay (lag time)	60 µs	
Integration time	400 μs	
Number of flashes	40	
Optimal z-pos §	Volume and plate format dependent	

[§]The focal height "z" is automatically calculated according to the plate format and the final working volume dispensed in the plate.

