according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 1 of 13, Revision date: 23/04/2024

SECTION 1 : IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

1.1 Product identifier:

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA

CAS No.: Index No: EC No: REACH No:

1.2 Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Use of the substance or mixture for Laboratory Research use only ; Uses advised against: Do not use for diagnostics, therapeutics or other clinical uses. ;

1.3 Details of the supplier of the safety data sheet:

Supplier: Name: CISBIO BIOASSAYS, company of Revvity Group - CBBIOA -Address: Parc Marcel Boiteux - BP 84175 - 30200 Codolet, France Phone : +33 4 66 79 67 05 - Fax : +33 4 66 79 67 50 E-Mail (competent person): codolet.sds@revvity.com

1.4 EMERGENCY TELEPHONE NUMBER:

France - Numéro ORFILA (INRS) : + 33 (0)1 45 42 59 59 Ce numéro permet d'obtenir les coordonnées de tous les centres Anti-poison Français. Ces centres anti-poison et de toxicovigilance fournissent une aide médicale gratuite (hors coût d'appel), 24 heures sur 24 et 7 jours sur 7.

USA & Canada - Phone: 1-888-963-456 (1) Other countries - Phone: +33 (0) 466 796 737 (2) https://www.cisbio.com https://www.revvity.com (1) Available from Monday to Thursday 8:30 am to 5:30pm GMT-5 and Friday: 8:30 am to 3:00pm GMT-5 (2) Available from Monday to Friday 9:00 am to 5:30 pm GMT+2

SECTION 2 : HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture:

Classification in accordance with 29 CFR 1910 (OSHA HCS)	Category code	Hazard statement	Precautionary statement
The substance or mixture is not classified as hazardous in accordance with 29 CFR 1910 (OSHA HCS)	None	None	None

2.2 Label elements

Labelling according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Product identifier:

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA

Substances contained in this product:

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 2 of 13, Revision date: 23/04/2024

Hazard pictograms

Signal word:

Hazard and precautionary statements:

2.3 Other hazards

The mixture contains substances classified as 'Substances of Very High Concern' (SVHC) published by the European CHemicals Agency (ECHA) under article 57 of REACH at levels of 0.1% or higher. This substance or mixture contains no components considered to be either persistent, bioaccumulative and toxic (PBT), or very persistent and very bioaccumulative (vPvB) at levels of 0.1% or higher ;

Adverse human health effects:

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 3 of 13, Revision date: 23/04/2024

SECTION 3 : COMPOSITION/INFORMATION ON INGREDIENTS

3.2 Mixtures

Hazardous ingredients:

Substance name	CAS n°	Index n°	EC n°	Classification in accordance with 29 CFR 1910 (OSHA HCS)	Concentration (%)	SCL	M-factor
4-(2- hydroxyethyl)piperazin-1- ylethanesulphonic acid	7365-45-9		230-907-9		< 3%		
Poly(oxy-1,2-ethanediyl), α-[4-(1,1,3,3- tetramethylbutyl)phenyl]- ω-hydroxy-	9002-93-1			Acute toxicity - Acute Tox. 4 - H302 - Oral Hazardous to the aquatic environment - Aquatic Acute 1 - H400 Hazardous to the aquatic environment - Aquatic Chronic 1 - H410 Serious eye damage/eye irritation - Eye Dam. 1 - H318 Skin corrosion/irritation - Skin Irrit. 2 - H315	< 1%		

Additional information:

Full text of H- and EUH-phrases: see SECTION 16.

SECTION 4 : FIRST AID MEASURES

4.1 Description of first aid measures

General information: Do not leave affected person unattended.;

Following inhalation: In case of respiratory tract irritation, consult a physician. ;

Following skin contact: After contact with skin, wash immediately with water;

Following eye contact: After contact with the eyes, rinse with water with the eyelids open for a sufficient length of time, then consult an ophthalmologist immediately. ;

Following ingestion: Do NOT induce vomiting.;

Self-protection of the first aider:

4.2 Most important symptoms and effects, both acute and delayed

Symptoms: No known symptoms to date. ; Effects:

4.3 Indication of any immediate medical attention and special treatment needed

Notes for the doctor:

SECTION 5 : FIREFIGHTING MEASURES

5.1 Extinguishing media:

Suitable extinguishing media: This product is not flammable. Use extinguishing agent suitable for type of surrounding fire ;

according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 4 of 13, Revision date: 23/04/2024

5.2 Special hazards arising from the substance or mixture

Hazardous combustion products: /

5.3 Advice for fire-fighters

Wear Protective clothing. ; Additional information:

SECTION 6 : ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

Emergency procedures: Provide adequate ventilation.;

6.2 Environmental precautions

Do not allow to enter into surface water or drains. ;

6.3 Methods and material for containment and cleaning up

For cleaning up: Suitable material for taking up: Absorbing material, organic ; Other information:

6.4 Reference to other sections

Additional information:

SECTION 7 : HANDLING AND STORAGE

7.1 Precautions for safe handling

<u>Protective measures:</u> Advice on safe handling: Avoid contact with skin, eyes and clothes. ; Fire preventions:

Do not eat, drink or smoke in areas where reagents are handled. ; <u>Advice on general occupational hygiene</u>: Handle in accordance with good industrial hygiene and safety practice ;

7.2 Conditions for safe storage, including any incompatibilities

<u>Requirements for storage rooms and vessels</u>: Keep container tightly closed. ; <u>Hints on storage assembly:</u> Materials to avoid: <u>Further information on storage conditions:</u>

7.3 Specific end uses:

Recommendations on specific end uses: Observe technical data sheet. ;

according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 5 of 13, Revision date: 23/04/2024

SECTION 8 : EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Preliminary remark:

- 8.1.1 Occupational exposure limits:
 - OSHA (USA)

Source :	Occupational Safe	ty and Health Admin	istration (OSHA) Permis	sible Exposure Limits (PEL	S) from 29 CFR 1910.100	00
Substance	EC-No.	CAS-No	OSHA Permissible Exposure Limit (PEL) 8-hour TWA (ppm)	OSHA Permissible Exposure Limit (PEL) 8- hour TWA (mg/m3)	OSHA Permissible Exposure Limit (PEL) STEL (ppm)	OSHA Permissible Exposure Limit (PEL) STEL (mg/m3)
7365-45-9 / 230-907- 9	230-907-9	7365-45-9				

Source :	TRGS 903, Novemb	RGS 903, November 2015, BAuA									
Substance	EC-No.	CAS-No	BGW (mg/m3)	BGW (ppm)							
7365-45-9 / 230-907- 9	230-907-9	7365-45-9									

8.1.2 DNEL/PNEC-values:

• DNEL worker

Source :	GESTIS – su	bstance dat	abase						
Substance	EC-No.	CAS-No	Acute – dermal, local effects (mg/kg/day)	Long-term – dermal, local effects (mg/kg/day)	Long-term – dermal, systemic effects (mg/kg/day)	Acute – inhalation, local effects (mg/m3)	Acute – inhalation, systemic effects (mg/m3)	Long-term – inhalation, local effects (mg/m3)	systemic effects
7365-45-9 / 230-907-9	230-907-9	7365-45-9					23.5-23.5		

• DNEL consumer

Source :	GESTIS – s	ubstance da	tabase						
Substance	EC-No.	CAS-No	Acute – dermal, local effects (mg/kg/day)	Long-term – dermal, local effects (mg/kg/day)	systemic effects	Acute – inhalation, local effects (mg/m3)	systemic effects	Long-term – inhalation, local effects (mg/m3)	systemic effects
7365-45-9 / 230-907-9	230-907-9	7365-45-9							

• PNEC

according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 6 of 13, Revision date: 23/04/2024

																\sim	r
Source :	INERIS																
			PNEC AQUATIC									PNEC Sediment					
Substance	EC-No.	CAS-No		freshwate	r	m	arine wat	er	interi	nittent re	lease	f	reshwate	er	ma	arine wat	ter
Substance	EC-INU.		(mg/L)	(mg/kg)	(ppm)	(mg/L)	(mg/kg)	(ppm)	(mg/L)	(mg/kg)	(ppm)	(mg/L)	(mg/kg)	(ppm)	(mg/L)	(mg/kg)	(ppm)
7365-45-9 / 230-907- 9	230-907-9	7365-45-9															

Source :	INERIS													
				Others										
Substance	ce EC-No. CAS-No			PNEC soil			PNEC sewage treatment plant			PNEC air			PNEC secondary poisoning	
			(mg/L)	(mg/kg)	(ppm)	(mg/L)	(mg/kg)	(ppm)	(mg/L)	(mg/kg)	(ppm)	(mg/L)	(mg/kg)	(ppm)
7365-45-9 / 230-907-9	230-907-9	7365-45-9												

8.2 Exposure controls

8.2.1 Appropriate engineering controls:

Technical measures and appropriate working operations should be given priority over the use of personal protective equipment. See section 7

8.2.2 <u>Personal protective equipment:</u>

Eye / Face protection: Safety glasses with side-shields ;

Skin protection:Gloves ;

Respiratory protection:Ensure adequate ventilation ;

Thermal hazards:

8.2.3 <u>Environmental exposure controls:</u>

Consumer exposure control

Measures related to consumer uses of the substance (as such or in mixtures):

Measures related to the service life of the substance in articles:

SECTION 9 : PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

Appearance

Appearance	
Physical state	Liquid ;
Colour	Colorless ;
Odour	
Odour threshold (ppm)	

		Concentration (mol/L)	Method	Temperature (°C)	Pressure (kPa)	Remark
рН	7					
Melting point (°C)						
Freezing point (°C)						
Initial boiling point/boiling range (°C)						
Flash point (°C)						
Evaporation rate (kg/m²/h)						
Flammability (type :) (%)						

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 7 of 13, Revision date: 23/04/2024

						v
Upper explosive limit (%)						
Lower explosive limit (%)						
Pa)						
cm³)						
Density (g/cm ³)						
Relative density (g/cm ³)						
Bulk density (g/cm ³)						
Critical density (g/cm ³)						
(g/L)						
t (log Pow) pH :						
erature (°C)						
nperature (°C) ergy : kJ						
Viscosity, dynamic (poiseuille)						
Viscosity, cinematic (cm ³ /s)						
Explosive properties						
Oxidising properties						
	losive (%) Lower explosive limit (%) Pa) m ³) Density (g/cm ³) Relative density (g/cm ³) Bulk density (g/cm ³) Critical density (g/cm ³) (g/L) : (log Pow) pH : erature (°C) regy : kJ Viscosity, dynamic (poiseuille) Viscosity, cinematic (cm ³ /s) Explosive properties	Iosive (%) Lower explosive limit (%) Pa) m³) Density (g/cm³) Relative density (g/cm³) Bulk density (g/cm³) Critical density (g/cm³) (g/L) : (log Pow) pH : erature (°C) rgy : kJ Viscosity, dynamic (poiseuille) Viscosity, cinematic (cm³/s) Explosive properties	Iosive (%) Lower explosive limit (%)	Iosive (%) Iower explosive limit (%) Pa) Lower explosive limit (%) Iower explosive limit (%) m³) Density (g/cm³) Iower explosive limit (%) Relative density (g/cm³) Iower explosive limit (%) Iower explosive limit (%) Relative density (g/cm³) Iower explosive limit (%) Iower explosive limit (%) Relative density (g/cm³) Iower explosive limit (%) Iower explosive limit (%) (g/L) Iower explosive limit (%) Iower explosive properties	Iosive (%) Iower explosive limit (%) Iower explosive properties Iower explosive properties Iower explosive limit (%) Iower explosive limit (%) Iower explosive properties Iower explosive properties Iower explosive limit (%) Iower explosive limit (%) Iower explosive properties Iower explosive properties Iower explosive limit (%) Iowerexplosive limit (%)	$\begin{array}{ c c c c c c } \hline (\%) & & & & & & & & & & & & & & & & & & &$

9.2 Other information:

No other relevant data available

SECTION 10: STABILITY AND REACTIVITY

10.1 Reactivity

This material is considered to be non-reactive under normal use conditions. ;

10.2 Chemical stability

- 10.3 Possibility of hazardous reactions
- 10.4 Conditions to avoid:

10.5 Incompatible materials:

10.6 Hazardous decomposition products:

Does not decompose when used for intended uses. ;

SECTION 11: TOXICOLOGICAL INFORMATION

Toxicokinetics, metabolism and distribution

11.1 Information on toxicological effects

<u>Substances</u>

• Acute toxicity

Animal data:

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 8 of 13, Revision date: 23/04/2024

Acute oral toxicity:

revvity

Substance name	LD50 (mg/kg)	Species	Method	Symptoms / delayed effects	Remark
9002-93-1	1800-1800	Rat			

Acute dermal toxicity:

Acute inhalative toxicity:

Practical experience / human evidence: Assessment / Classification: General Remark:

• Skin corrosion/irritation

Animal data:

Substance name	Species	Method	Exposure time	Result/evaluation	Score	Remark
9002-93-1						

In-vitro skin test method: In-vitro skin test result:

Assessment / Classification:

• Eye damage/irritation

Animal data:

Substance name	Species	Method	Exposure time	Result/evaluation	Score	Remark
9002-93-1	Rabbit			Eye irritation		

In vitro eye test method: In vitro eye test result: Assessment / Classification:

• CMR effects (carcinogenity, mutagenicity and toxicity for reproduction)

• Germ cell mutagenicity:

Animal data:

Assessment / Classification:

• Carcinogenicity

Practical experience / human evidence:

according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 9 of 13, Revision date: 23/04/2024

Animal data:

Other information: Assessment / Classification:

• Reproductive toxicity

Practical experience / human evidence: Animal data:

Other information: Assessment / Classification:

Overall assessment on CMR properties:

- Specific target organ toxicity (single exposure)
 - o STOT SE 1 and 2

Animal data:

Other information:

o STOT SE 3

Practical experience / human evidence:

Other information: Assessment / Classification:

• Specific target organ toxicity (repeated exposure)

Practical experience / human evidence: Animal data:

Assessment / Classification: Other information

• Aspiration hazard

Practical experience / human evidence: Experimental data: viscosity data: see SECTION 9. Assessment / Classification: Remark:

11.1.1 <u>Mixtures</u>

No toxicological information is available for the mixture itself

SECTION 12 : ECOLOGICAL INFORMATION

In case that test data regarding one endpoint/differentiation exist for the mixture itself, the classification is carried out according to the substance criteria (excluding biodegradation and bioaccumulation). If no test data exist, the criteria for

according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 10 of 13, Revision date: 23/04/2024

mixture classification has to be used (calculation method) data of the ingredients are shown.

in this case the toxicological

12.1 Aquatic toxicity:

Acute (short-term) fish toxicity

Source :	Informatio	ns relatives a	à la régleme	entation VM	IE (France) : E	D 984, 07.201	2			
Substance	EC-No.	CAS-No	LC50 (mg/L)	EC50 (mg/L)	Test duration	Species	Result/ Evaluation	Method	Remark	General Remark
9002-93-1		9002-93-1	8,9		96	Pimephales promelas (fathead minnow)				

Chronic (long-term) fish toxicity

Source :	Informations relatives à la réglementation VME (France) : ED 984, 07.2012										
Substance	EC-No.	EC-No. CAS-No NOEC (mg/L) Test duration Species Method Remark General Remark									
9002-93-1		9002-93-1									

Acute (short-term) toxicity to crustacea

Source :	Source : Informations relatives à la réglementation VME (France) : ED 984, 07.2012											
Substance	EC-No.	C-No. CAS-No EC50 Test duration Species Result/ Method Remark General Remark										
9002-93-1		9002-93-1	26	48								

Chronic (long-term) toxicity to crustacea

Source :	e : Informations relatives à la réglementation VME (France) : ED 984, 07.2012										
Substance	EC-No.	EC-No. CAS-No NOEC (mg/L) Test duration Species Method Remark General Remark									
9002-93-1		9002-93-1									

Acute (short-term) toxicity to algae and cyanobacteria

Source :	arce : Informations relatives à la réglementation VME (France) : ED 984, 07.2012											
Substance	EC-No.	. CAS-No EC50 (mg/L) Test duration Species Result/ Evaluation Method Remark General Rema										
9002-93-1		9002-93-1										

Toxicity to microorganisms and other aquatic plants / organisms

Source :	Source : Informations relatives à la réglementation VME (France) : ED 984, 07.2012										
Substance	EC-No.	EC-No. CAS-No EC50 (mg/L) Species Method Remark General Remark									
9002-93-1		9002-93-1									

Assessment / Classification:

according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 11 of 13, Revision date: 23/04/2024

12.2 Persistence and degradability

Biodegradation:

Source :	Informations relatives à la réglementation VME (France) : ED 984, 07.2012										
Substance	EC-No. CAS-No Inoculum Biodegradation parameter Degradation rate (%) Method Remark										
9002-93-1		9002-93-1		BOD (% of COD).	36-36		In accordance with the required stability the product is poorly biodegradable.				

Abiotic Degradation:

Source :								
Substance	EC-No.	CAS-No	Abiotic degradation test type	Half-life time (j)	Temperature (°C)	рН	Method	Remark
9002-93-1		9002-93-1						

Assessment / Classification:

12.3 Bioaccumulative potential

Bioconcentration factor (BCF):

Source :						
Substance	EC-No.	CAS-No	Species	Result	Method	Remark
9002-93-1		9002-93-1				

12.4 Mobility in soil

Source :											
Substance	EC n°	CAS n°	Distribution	I ransport	Henry's law constant (Pa.m3/mol)	Log KOC	Half-life time in soil (j)	Half-life time in fresh water (j)	Half-life time in sea water (j)	Method	Remark
9002-93-1		9002- 93-1									

12.5 Results of PBT and vPvB assessment

12.6 Other adverse effects:

Additional ecotoxicological information:

SECTION 13 : DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Waste treatment options: Dispose of waste according to applicable legislation. ;

according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 12 of 13, Revision date: 23/04/2024

Other disposal recommendations: Additional information:

SECTION 14 : TRANSPORT INFORMATION

ADR/RID/AND/IMDG/IATA

UN No.	
UN Proper shipping name	
Transport hazard class(es)	
Hazard label(s)	
Packing group	

Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code

Land transport (ADR/RID)			
Classification code ADR:	Special Provisions for ADR/RID:		
Limited quantities for ADR/RID:	Excepted Quantities for ADR/RID:		
Packing Instructions for ADR/RID:			
Special packing provisions for ADR/RID:			
Mixed packing provisions:	Portable tanks and bulk containers Instructions:		
Portable tanks and bulk containers Special Provision	ons:		
ADR Tank Code:	ADR Tank special provisions:		
Vehicle for tank carriage:	Special provisions for carriage Packages:		
Special provisions for carriage Bulk:			
Special provisions for carriage for loading, unloadi	ng and handling:		
Special Provisions for carriage Operation:			
Hazard identification No:	Transport category (Tunnel restriction code):		
Sea transport (IMDG)			
Marine Pollutant:	Subsidiary risk(s) for IMDG:		
Packing provisions for IMDG:	Limited quantities for IMDG:		
Packing instructions for IMDG:	IBC Instructions:		
IBC Provisions:	IMO tank instructions:		
UN tank instructions:	Tanks and bulk Provisions:		
EmS :	Stowage and segregation for IMDG:		
Properties and observations:			
Inland waterway transport (ADN) Classification Code ADN:	Created Dravisiana ADN:		
	Special Provisions ADN:		
Limited quantities ADN:	Excepted quantities ADN:		
Carriage permitted:	Equipment required:		
Provisions concerning loading and unloading:	Number of blue conce/lighter		
Provisions concerning carriage:	Number of blue cones/lights:		
Remark:			
<u>Air transport (ICAO-TI / IATA-DGR)</u>			
Subsidiary risk for IATA:	Excepted quantity for IATA:		
Passenger and Cargo Aircraft Limited Quantities Pa			
Passenger and Cargo Aircraft Limited Quantities Maximal Net Quantity :			
Passenger and Cargo Aircraft Packaging Instruction			
Passenger and Cargo Aircraft Maximal Net Quantil			
Cargo Aircraft only Packaging Instructions :	· /		
J ,			

according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g))

Designation / Trade name: HTRF (h) Total Cyclin B1 Kit - Ctrl Lys 64CYCB1TTDA Version: US, Page 13 of 13, Revision date: 23/04/2024

Cargo Aircraft only Maximal Net Quantity : ERG code:

Special Provisions for IATA:

SECTION 15 : REGULATORY INFORMATION

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

15.2 Chemical Safety Assessment:

For the following substances of this mixture a chemical safety assessment has been carried out :

SECTION 16 : OTHER INFORMATION

16.1 Indication of changes

Date of the previous version:09/04/2024 Modifications:

16.2 Abbreviations and acronyms:

16.3 Key literature references and sources for data

16.4 Classification for mixtures and used evaluation method according to Hazard Communication Standard (HCS) (29 CFR 1910.1200(g):

See SECTION 2.1 (classification).

16.5 Relevant R-, H- and EUH-phrases (number and full text):

Code	Hazard statments
H302	Harmful if swallowed
H315	Causes skin irritation
H318	Causes serious eye damage.
H400	Very toxic to aquatic life
H410	Very toxic to aquatic life with long lasting effects

