

Whole Genome Sequencing as a Screening Tool in Healthy Population: Lesson learned from 110 cases

Madhuri Hegde, PhD., FACMG, Ruby Liu, Christin Collins, Babi Nallamilli, Megan Landsverk, Jing Xie, Akanchha Kesari, Alice Tanner, Zeq Ma, and Alka Chaubey. Revvity Omics, Pittsburgh, PA

BACKGROUND

- Whole genome sequencing (WGS) has been widely considered a powerful tool in identification of disease- causing variants to ascertain clinical diagnoses.
- With WGS's uniformed coverage for both exonic and intronic regions, the expected clinical sensitivity of WGS is up to 40-50%.
- the utilization of WGS as a screening test for healthy individuals has increased.
- RVTY healthy WGS includes copy number variation analysis and mitochondrial DNA analysis.
- We have performed 110 WGS on reportedly healthy asymptomatic individuals

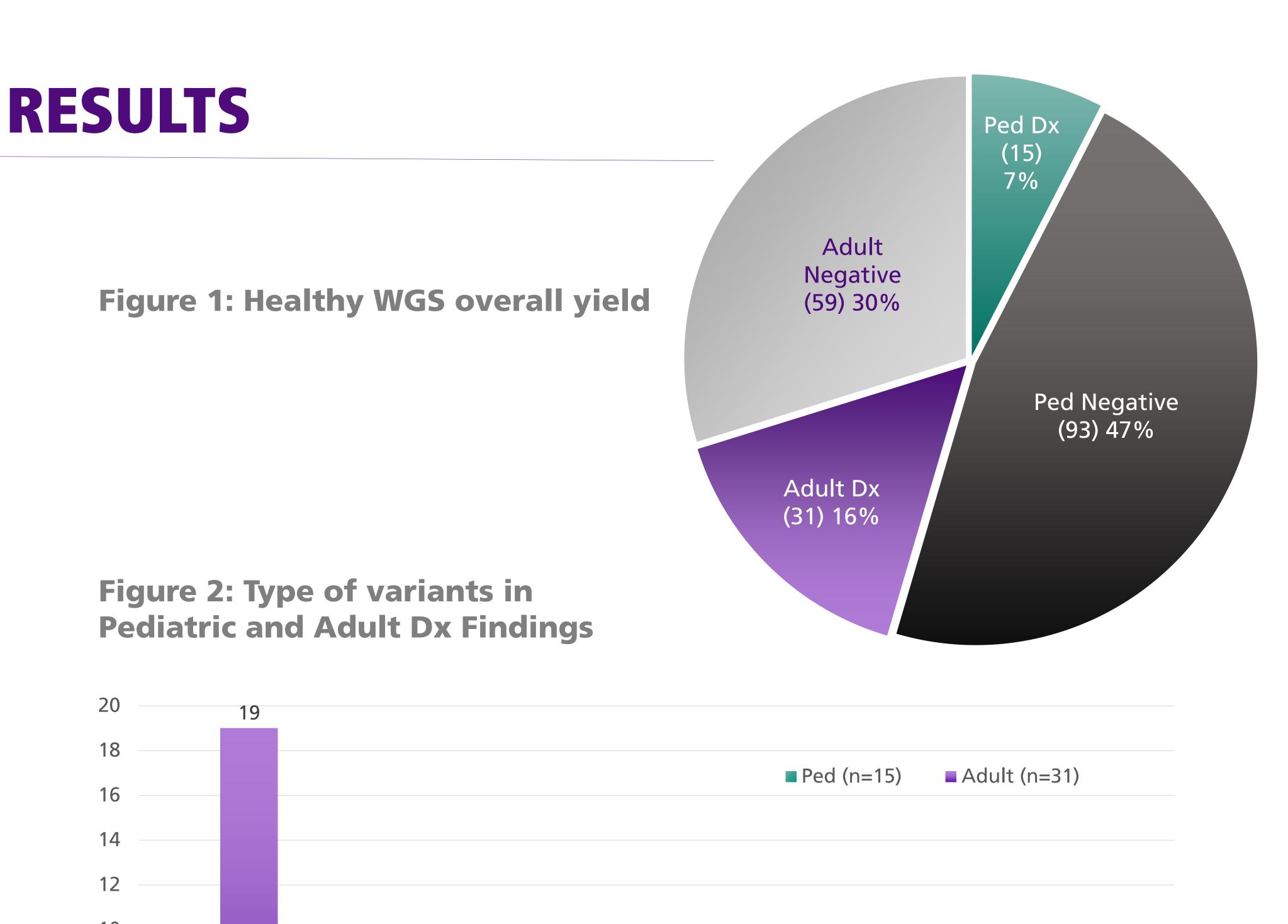


Figure 3: Associated Diseases in Pediatric and Adult Cohort

Category	# of genes	Genes	# of cases
Hereditary cancer syndrome	7	SDHA, MITF, CHEK2, RAD50, FH, APC, PTEN	12
Neurodegeneration	2	APOE, LRRK2	11
Neurology	2	PRRT2, MME	2
Endocrinology	3	ABCC8, PROKR2, NOBOX	3
Skeletal dysplasia	2	ARSE, FGFR3	2
Biochemical	3	HFE, GALT, G6PD	7
Pulmonary	2	SFTPC, SMAD9	2
Urology	2	SLC34A1, SLC3A1	2
Cardiovascular	3	MFAP5, MYBPC3, PRKAG2	4
Muscular	2	AMPD1, SCN4A	3
Other (deafness, skin, dysmorphism, fever)	4	IRF6, FLG, TECTA, MEFV	4

MULTIPLE DIAGNOSES EXAMPLES

Case/Age	Dx findings 1	Associated disease	Dx findings 2	Associated disease
1/PED	AMPD1, c.[133C>T;242C>T] (p.[Gln45Ter; Pro81Leu]), Pathogenic with reduced penetrance, homozygous	Myopathy due to myoadenylate deaminase deficiency	SDHA, c.1534C>T (p.Arg512Ter), Likely Pathogenic	Paragangliomas 5
2/PED	HFE, c.187C>G (p.His63Asp); c.845G>A (p.Cys282Tyr), Pathogenic with reduced penetrance	Hemochromatosis	TECTA, c.2342_2345dup, Pathogenic	Deafness, autosomal dominant 8/12
3/ADULT	LRRK2, c.6055G>A(p.Gly2019Ser), Pathogenic	Parkinson disease	APOE, c.388T>C (p.Cys130Arg), risk factor	Alzheimer disease
4/ADULT	MYBPC3, c.3697C>T (p.Gln1233Ter), Pathogenic.	Hypertrophic cardiomyopathy; Dilated cardiomyopathy; Left ventricular noncompaction 10	SLC3A1, c.1354C>T (p.Arg452Trp), Pathogenic	Cystinuria
4/ADULT	<i>MME</i> , c.467del, Pathogenic	Charcot-Marie-Tooth disease, axonal, type 2T; Spinocerebellar ataxia 43	PROKR2, c.254G>A (p.Arg85His), Pathogenic	Hypogonadotropic hypogonadism 3 with or without anosmia
5/ADULT	APC, c.3920T>A (p.Ile1307Lys), Risk Factor.	Familial adenomatous polyposis (FAP)	G6PD, c.563C>T (p.Ser188Phe), Pathogenic, Hemizygous	Hemolytic anemia, G6PD deficient (favism)
6/ADULT	<i>MYBPC3</i> , c.3190+5G>MYBPC3 A, Pathogenic	Hypertrophic cardiomyopathy; Dilated cardiomyopathy; Left ventricular noncompaction 10	NOBOX, c.1295_1310delinsGAG, Likely Pathogenic	Premature ovarian failure 5
7/ADULT	PTEN c.801+1del, Pathogenic	Cowden syndrome 1; Macrocephaly/autism syndrome; Lhermitte-Duclos syndrome	PRKAG2 c.905G>A(p.Arg302Gln), Pathogenic	Cardiomyopathy, hypertrophic 6; Glycogen storage disease of heart, lethal congenital; Wolff- Parkinson-White syndrome
8/ADULT	MITF, c.952G>A (p.Glu318Lys), Pathogenic	Melanoma, cutaneous malignant, susceptibility to, 8	APOE, c.388T>C (p.Cys130Arg), risk factor	Alzheimer disease

CONCLUSION

XL

SNV (n=43)

Dual Dx

Del

Dup

CNV (n=2)

Healthy WGS screening test can be considered as a new standard of care along with newborn screening and carrier screening.

AOH (n=1)

- Healthy WGS allows individuals to learn their risk for medically actionable conditions and carrier status prior to family planning
- Healthy WGS provide valuable information for the healthcare providers to help their patients making suitable prophylactic plans,
 finding medical management guidelines, selecting optimal dosage of medications and adapting to a healthy life style.