Sulfur-35 handling precautions

Physical data

Maximum beta energy: 0.167 MeV (100%)⁽¹⁾
Maximum range of beta in air: 24 cm (9.6 in)⁽²⁾

Occupational limits(3)

Annual limit on intake: 6 mCi (220 MBq) for oral ingestion and

2 mCi (74 MBq) for inhalation

Derived air concentration: 9 x 10⁻⁷ µCi/mL (33 kBq/m³)

Dosimetry

Millicurie (37 MBq) quantities of ³⁵S do not present a significant external exposure hazard since the low-energy emissions barely penetrate the outer dead layer of skin. The metabolism and retention of sulfur compounds in the body vary considerably for different chemical forms⁽⁴⁾. Sulfur uptakes are assumed to be uniformly distributed throughout all organs and tissues in the body⁽⁴⁾. For uptakes of inorganic sulfur, 15% is assumed to be retained with a 20 day biological half-life and 5% retained with a 2,000 day biological half-life. The remaining 80% is assumed to be rapidly excreted⁽⁴⁾.

³⁵**S**

87.4 d

β- 0.167

Νο γ

E 0.167

Decay table

Physical half-life: 87.4 days⁽¹⁾.

To use the decay table, find the number of days in the top and left hand columns of the chart, then find the corresponding decay factor. To obtain a precalibration number, divide by the decay factor. For a postcalibration number, multiply by the decay factor. Visit www.revvity.com to use our online Radioactive Decay Calculator.

This document contains general information designed to provide a basic understanding of radiation safety. While we believe the information to be accurate, regulatory requirements may change and information contained herein is not tailored to individual needs. A radiation protection specialist should be consulted for specific applications.

Days											
		0	3	6	9	12	15	18	21	24	27
Days	0	1.000	0.976	0.954	0.931	0.909	0.888	0.867	0.847	0.827	0.807
	30	0.788	0.770	0.752	0.734	0.717	0.700	0.683	0.667	0.652	0.636
	60	0.621	0.607	0.592	0.579	0.565	0.552	0.539	0.526	0.514	0.502
	90	0.490	0.478	0.467	0.456	0.445	0.435	0.425	0.415	0.405	0.395
	120	0.386	0.377	0.368	0.359	0.351	0.343	0.335	0.327	0.319	0.312
	150	0.304	0.297	0.290	0.283	0.277	0.270	0.264	0.258	0.252	0.246
	180	0.240	0.234	0.229	0.223	0.218	0.213	0.208	0.203	0.198	0.194
	210	0.189	0.185	0.180	0.176	0.172	0.168	0.164	0.160	0.156	0.153
	240	0.149	0.146	0.142	0.139	0.136	0.132	0.129	0.126	0.123	0.120
	270	0.118	0.115	0.112	0.109	0.107	0.104	0.102	0.099	0.097	0.095
	300	0.093	0.090	0.088	0.086	0.084	0.082	0.080	0.078	0.077	0.075
	330	0.073	0.071	0.070	0.068	0.066	0.065	0.063	0.062	0.060	0.059
	360	0.058	0.056	0.055	0.054	0.052	0.051	0.050	0.049	0.048	0.046

Revvity has developed the following suggestions for handling Sulfur-35 after years of experience working with this low-energy beta emitter.

General handling precautions for Sulfur-35

- 1. Designate area for handling ³⁵S and clearly label all containers.
- 2. Prohibit eating, drinking, smoking and mouth pipetting in room where ³⁵S is handled.
- 3. Use transfer pipets, spill trays and absorbent coverings to confine contamination.
- 4. Handle potentially volatile compounds in ventilated enclosures.
- 5. If enhanced containment is necessary, handle volatile compounds in closed systems vented through suitable traps.
- Sample exhausted effluent and room air by drawing a known volume through a membrane filter followed by an impinger containing dilute NaOH.
- 7. Wear disposable lab coat, gloves and wrist guards for secondary protection.
- 8. Select appropriate gloves for chemicals handled.

- Maintain contamination and exposure control by regularly monitoring and promptly decontaminating gloves and surfaces.
- 10. Use pancake or end-window Geiger-Mueller detector or liquid scintillation counter to detect ³⁵S.
- 11. Submit periodic urine samples for bioassay to indicate uptake by personnel.
- 12. Isolate waste in clearly labeled sealed containers and hold for decay.
- 13. Establish air concentration, surface contamination and bioassay action levels below regulatory limits. Investigate and correct any conditions that may cause these levels to be exceeded.
- 14. On completing an operation, secure all ³⁵S; remove protective clothing and dispose of protective coverings; monitor and decontaminate self and surfaces; wash hands and monitor them again.

www.revvity.com 2

³⁵S may be difficult to distinguish from ¹⁴C because the beta emissions are of similar energy. If ¹⁴C and ³⁵S are being used in the same area, establish controls that are conservative for both radionuclides. Some ³⁵S compounds, including Methionine, generate volatile fractions particularly during lyophilization or incubation. Check for airborne and surface contamination. Charcoal and copper turnings are effective in absorbing and minimizing airborne contamination.

References

- Kocher, David C., Radioactive Decay Data Tables, Springfield: National Technical Information Service, 1981 DOE/TIC-11026.
- 2. Kaplan, Irving, Nuclear Physics, New York: Addison-Wesley, 1964.
- U. S. Nuclear Regulatory Commission. 10 CFR 20 Appendix B – Standards for Protection Against Radiation, 1994.
- 4. ICRP Publication 30, Part 2, Limits for Intakes of Radionuclides by Workers. Pergamon Press, Oxford, 1980.

