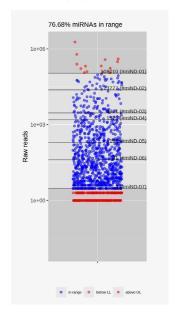

A unique NGS workflow for absolute quantitation of microRNAs and other small RNAs in any biological sample and species

miND® (microRNA NGS Data Analysis) s a combination of a novel small RNA-seq workflow¹ and bioinformatic pipeline² for absolute quantitation of microRNAs in any biological matrix and species.

The miND® workflow uses proprietary miND spike-ins that are added to an RNA sample during the NGS library preparation.


miND® spike-ins consist of seven oligonucleotides with a unique design that reduces sequencing bias³. miND® spike-ins are provided in a specific ratio to cover the broad concentration range of endogenous small RNAs (see page 3).

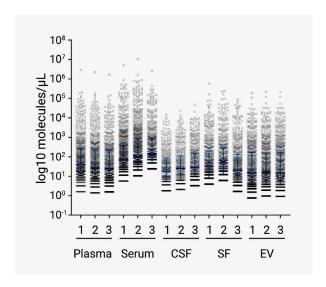
The miND® data analysis pipeline processes NGS raw data and compiles all results in a simple but comprehensive report (see page 4).


miND® spike-ins can be purchased as a product to be included in any small RNA-sequencing project for QC and data normalization.

miND® spike-ins enable quality control and absolute quantitation of microRNAs in different sample types

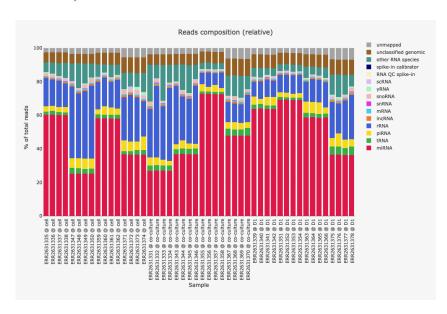
Spike-in calibrator fit

miRNA and spike-in reads distribution

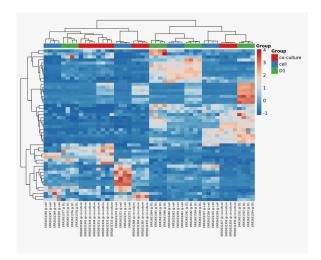

Spike-in calibrator applications:

- miND® spike-ins serve as a **quality control** for small RNA-sequencing experiments to confirm the dynamic range and sensitivity of the assay.
- miND® spike-ins are used to generate a linear regression model to calculate absolute concentrations of endogenous microRNAs

Fit-for-purpose analytical validation of the miND® pipeline has been completed¹:


- Relative accuracy
- Precision
- · Analytical measurement range
- Sequencing bias

The miND® pipeline was tested with plasma, serum, cerebrospinal fluid (CSF), synovial fluid (SF), and extracellular vesicles (EV)¹


TAmiRNAs miND® pipeline provides user friendly and highly supportive data analysis reports

1. Quality control

Reads classification plots (shown here) provide insights into the RNA composition of each sample. This is complemented by information on mapping statistics, microRNA numbers, and read length.


2. Unsupervised analysis (heatmap, PCA, t-SNE)

Heatmaps visualize RPM normalized reads and information on the clustering of samples and microRNAs.

4. Full access: all raw and normalized data, tables, plots, and differential expression results can be downloaded in CSV or XLX Format

3. Supervised analysis (differential expression)

Volcano plots (shown here) and MA plots visualize the relation of the logFC (how much did a specific miRNA change between the groups) and the statistical significance.

Download an exemplary report here:

To order products online: www.revvity.com

To request a quote or place an order: www.revvity.com/contact-us

For technical support: ngs@revvity.com

An authorized distributor

Revvity, Inc. 940 Winter Street Waltham, MA 02451 USA www.revvity.com

TAmiRNA GmbH Leberstrasse 20 1110 Vienna, Austria +43 1 391 33 22 90 office@tamirna.com www.tamirna.com