The Pin-point™ platform

A novel modular base editing system

revvity Updated 16 July 2024

revvity

Outline

- 1. [Introduction](#page-2-0)
- 2. [Data Overview](#page-10-0)
- 3. [Summary](#page-16-0)

Supplemental Sections

- 1. [Knockout explained](#page-21-0)
- 2. [T cell datapack](#page-22-0)
- 3. [iPSC datapack](#page-27-0)
- 4. HSPC [datapack](#page-32-0)
- 5. [Complex Engineering](#page-35-0)
- 6. [Flexible Modularity](#page-40-0)
- 7. Screening [Arrayed & Pooled](#page-44-0)

revuty

Revvity is born of a single-minded pursuit: to help improve human health by bridging the gap between science and people through precision and care.

We innovate and collaborate to empower our partners to see science in unexpected ways that deliver breakthrough results.

Revvity's Cell & Gene Therapy Research Portfolio

Total-Seq Cell selection & single cell proteogenomics CELL COUNTING THE E THE

> Cell viability, potency & yield

DISCOVERY & QC

Cell and AAV characterization and QC Targeted knock-in

Efficient Flexible Precise Multiplexing Safe Dividing, non-dividing, **Programmable** Dividing, non-dividing Dividing and Dividing Dividing and Dividing and Dividition Service Reports Modular Predictable Avoid DSBs

CRISPR gene editing Entire Base editing

GENE DISRUPTION BY A DSDNA BREAK

- Indel formation to disrupt gene sequence
- complex population of indels

GENE MODIFICATION BY POINT MUTATIONS

- Creation of stop codons or splice site disruption for [knockout](#page-21-0)
- Introduction of single base conversion

Competitive advantages of base editing

1st generation Cas enzymes Gene disruption by a dsDNA break

2nd generation base editing

Gene modification by point mutation

- ✓ *Avoidance of double strand DNA breaks for reduced cytotoxicity and high viability*
- **Permanent change** to the DNA
- ✓ *Flexible creation of stop codons or splice site disruption for knockout or introduction of single base conversion*
- ✓ *Predictable, precise, and efficient single or multigene editing*
- ✓ *Components are easy to design, synthesize, and deliver*

New generation Pin-point[™] base editing platform

■ [Simultaneous knock-in and knockout](#page-35-0) in a single reaction

■ Nuclease and deaminase [flexible](#page-40-0)

- [Modular control](#page-41-0) over target and editing window to specifically reach your gene of interest
- A single novel, patented aptamerrecruited base editing platform for your therapeutic development

What is the Pin-point^{m} platform?

Based on a patented aptamer-recruited base editing arrangement

3 component system

- 1. RNA-guided enzyme
- 2. Guide RNA with aptamer
- 3. Deaminase and recruitment protein

Demonstrated advantages

- Multiplex gene editing including knock-in and knockout with high efficiency and safety
- ❑ Validated performance in T cells, iPSCs, and HSPCs ✓
- Mix-and-match for target specificity and efficiency

Base editing terminology

LEM

"Base editing window"

nCas9/rat APOBEC is most likely to edit C's in positions 4-7

> "Bystander editing" is any editing other than the target base of interest

"Off-target editing" is any editing other than at the locus that is targeted

The Pin-point^{m} base editing platform is accelerating therapeutic development research

衡

Molecular Therapy

Original Article

An aptamer-mediated base editing platform for simultaneous knockin and multiple gene knockout for allogeneic CAR-T cells generation

Immacolata Porreca,¹ Robert Blassberg,¹ Jennifer Harbottle,^{1,7} Bronwyn Joubert,¹ Olga Mielczarek,¹ Jesse Stombaugh,² Kevin Hemphill,² Jonathan Sumner,³ Deividas Pazeraitis,³ Julia Liz Touza,⁴ Margherita Francescatto.⁴ Mike Firth.³ Tommaso Selmi.^{1,9} Juan Carlos Collantes.⁵ Zaklina Strezoska.³ Benjamin Taylor,³ Shengkan Jin,⁶ Ceri M. Wiggins,^{1,8} Anja van Brabant Smith,² and John J. Lambourne^{1,10}

¹Revvity, 8100 Cambridge Research Park, Cambridge CB25 9TL, UK; ²Revvity, 2650 Crescent Drive, Lafayette, CO 80026, USA; ³AstraZeneca, Discovery Sciences, RBD, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, UK; 4AstraZeneca, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Perevaredsleden 1, 431 83 Mölndal, Sweden: ⁵Departamento de Biotecnología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Ouito. Campus Cumbayá, Casilla Postal 17-1200-841, Quito 170901, Ecuador; "Pharmacology Department, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA

generation of adoptive cellular therapies. In conventional gene editing platforms that rely on nuclease activity, such as clustered regularly interspaced short palindromic repeats CRISPR-associated protein 9 (CRISPR-Cas9), allow efficient need to provide new functions to the cells to make effective and introduction of genetic modifications; however, these modifications occur via the generation of DNA double-strand breaks (DSBs) and can lead to unwanted genomic alterations and genotoxicity. Here, we apply a novel modular RNA aptamer-medi ated Pin-point base editing platform to simultaneously introduce multiple gene knockouts and site-specific integration of a transgene in human primary T cells. We demonstrate high editing efficiency and purity at all target sites and significantly reduced frequency of chromosomal translocations compared with the conventional CRISPR-Cas9 system. Site-specific knockin of a chimeric antigen receptor and multiplex gene knockout are achieved within a single intervention and without nents. The ability to perform complex genome editing efficiently and precisely highlights the potential of the Pin-point platform for application in a range of advanced cell therapies.

Gene editing technologies hold promise for enabling the next cell product. To expand the scope of these innovative off-the-shelf therapies to solid tumors, further edits will also be required to ensure therapeutic cells retain their efficacy in the refractory and heterogeneous tumor microenvironment.⁴ These factors, together with the safe therapies that offer wider patient accessibility and therapy deployment, ultimately demand increasingly refined genome editing strategies.

Gene editing technologies such as zinc-finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9 have all been employed to successfully perform targeted editing at genomic loci for effective knockout and knockin applications. However, the generation of double-strand breaks (DSBs) inherent to their mechanism of conferring a DNA edit can lead to chromosomal loss or structural variation.⁵⁻¹¹ The occurrence of chromosomal aberrations is enhanced in the context of multi-gene editing as more concurrent the requirement for additional sequence-targeting compo- DSBs are generated, and the extent of this damage is expanded if DNA breaks also occur at off-target sites. Although many structural aberrations in a cell may not be viable, it has been reported that

INTRODUCTION

Gene editing technologies have entered the clinic and show significant potential for advancing next-generation therapies, particularly in the development of more efficient chimeric antigen receptor (CAR)-T cell therapies to address hematological malignancies.¹⁻³ To overcome the logistical and infrastructure-related challenges and product variability barriers of the autologous cell therapy paradigm, recent focus has shifted to realizing the potential of allogeneic cell therapies. The manufacture of allogeneic cell products requires multiple edits to prevent both graft-versus-host disease and immune rejection by the host, which would otherwise limit efficacy, persistence, and safety of the

Received 21 June 2023: accepted 24 June 2024

- ⁷Present address: AstraZeneca, Safety Sciences, Cell Therapy Oncology team, R&D, CB2 0QQ Cambridge, UK ⁸Present address: AstraZeneca, Discovery Sciences, R&D, 1 Francis Crick Avenue
- Cambridge Biomedical Campus, CB2 0AA Cambridge, UK 9 Present address: Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Biomediche, Via Fratelli Cervi 93, 20054 Segrate (MI), Italy
- ¹⁰Present address: Pencil Biosciences Ltd, 21G1, Alderley Park, Macclesfield Cheshire SK1 04TG, UK

Correspondence: Immacolata Porreca, Revvity, 8100 Cambridge Research Park Cambridge CB25 9TL UK E-mail: i

Molecular Therapy Vol. 32 No B August 2024 @ 2024 The Authors.
Published by Elsevier Inc. on behalf of The American Society of Gene and Cell Therapy.
This is an open access article under the CC BY-NC-ND license (http://cre

<https://www.biorxiv.org/content/10.1101/2023.06.20.545315v1>

[Press release](https://news.revvity.com/press-announcements/press-releases/press-release-details/2023/Revvity-Announces-New-License-Agreement-for-Next-Generation-Base-Editing-Technology/default.aspx)

Highly efficient and precise single and multiplex editing in T cells, iPSCs, and HSPCs

*Normalized to controls

Jump to clinical enrichment of T cells [return to outline](#page-1-0)

 $\sqrt{ }$ 11

Strong safety profile compared to CRISPR/Cas9 editing

Cas9 PnP

The Pin-point[™] base editing platform is precise and avoids translocations

*Normalized to controls

revivit

0

Additional off-target analysis: <https://www.sciencedirect.com/science/article/pii/S1525001624004234>

12 [return to outline](#page-1-0)

High viability and cell health, even when editing multiple targets

The Pin-point[™] base editing platform is gentle on sensitive cell types

CEVVIL

A solution for complex engineering: One-step simultaneous knock-in and knockout in T cells

RHA

Efficient and accurate for concurrent transgene insertion and multiplex base editing

 $\sqrt{ }$ 14 [return to outline](#page-1-0)

Choose components for locus-specific optimization

Increased potential to correct more pathogenic SNVs that are not reachable with existing published systems*

Example of optimization of the editing window by selecting the best guide RNA and deaminase pairs

Schematic depicts nCas9 configuration

The modular Pin-point™ platform can be customized to combine optimal components for a wide range of base editing applications

re)

15

The Pin-point^{-M} platform configured with Epic Bio's ultracompact Type V effector protein, dCasONYX

Ultra-compact engineered Cas12f variant dCasONYX is under 1.5 kb

Efficient editing with multiple deaminases when optimal gRNA scaffold is used

TEVV

Robust targeting capability

Gene-gRNA design

Additional benefits of dCasONYX

- \checkmark Rapidly advancing to the clinic: Epic Bio's asset EPI-321 for the potential cure for FSHD
- \checkmark Superior off-target profile: described in Xin et al. Nature Communications¹
- \checkmark Fully deactivated nuclease: base editing without the risk of cutting the DNA
- \checkmark Low immunogenicity: no prior exposure to dCasONYX in 10 human T cell donors, while 80% of human population have prior exposure to Cas9²
- \checkmark Small size: Coding length less than 1.5 kb ideal for AAV packaging

A dCasONYX Pin-point configuration is one potential alternate to Cas9 for therapeutic applications

1 - doi: 10.1038/s41467-022-33346-1 2 - doi: 10.1038/s41591-018-0326-x

\r 16

The Pin-point^{m} platform is a transformational nextgeneration gene editing technology

Highly effective editing platform, even for complex edits

Versatile technology modular and capable of generating locus-specific effects for novel therapies

Improved safety compared to standard CRISPR-Cas9 systems

[return to outline](#page-1-0)

Access the Pin-point[™] base editing platform

Licensing

Licenses for therapeutic development

Comprehensive support

Collaboration opportunities

Research Reagents Synthetic off-the-shelf reagents Validated controls Custom guide RNAs

Services Tiled pooled screening Functional genomics Cell models

https://horizondiscovery.com/en/gene-editing/pin-point-base-editing-platform BaseEditing@HorizonDiscovery.com

TEVVIT

revuty

We are a visionary partner in developing technologies and solutions across disease research pathways.

Here for a healthier humankind.

Revvity.com

Supplemental slides

How can base editing be used to create gene knockout?

 \rightarrow TGA (STOP)

 \rightarrow TAG (STOP)

 \rightarrow TAA (STOP)

Premature Stop Codons **Splice Sites Disruption**

Billon et al. 2017. doi.org/10.1016/j.molcel.2017.08.008

Lery

Webber et al 2019. doi.org/10.1038/s41467-019-13007-6

22

Validated performance in primary T cells

Highly efficient and precise multiplex T cell editing

Pin-point[™] base editing system is highly efficient and avoids potentially catastrophic DNA damage

Strong safety profile in T cells

TEVVI

A cleaner and safer approach to multiplex gene editing in T cells

Additional off-target analysis: <https://www.sciencedirect.com/science/article/pii/S1525001624004234>

25

No impact on T cell health

Cell viability maintained Theorem 2012 Rate of cell expansion unaffected

High multiplexing does not compromise cellular health or yield

revvi

A solution for complex engineering: One-step simultaneous knock-in and knockout in T cells

27 [return to outline](#page-1-0)

Control CAR 0 20 40 60 80 100
 100
 100

120

Validated performance in iPSCs

Base editing with a Pin-point^{m} platform in iPSCs

Mock

up to 100 days and retain differentiation potential

Mock

Multi-gene editing in iPSCs

Effective multiplex base

High base editing efficiency at target loci in a multiplex setting

TEVVI

Edited cells are viable

High survival of multi-edited iPSCs with a Pin-point[™] system Edited cells retain their pluripotency

Pluripotency is retained in iPSCs edited with a Pin-point system

Strong safety profile in iPSCs

Talgal iversely Off-target chrs Target 3 previously validated in T cells **2008** and the Magnetic State of the خ^{رج}
in-silico predicted translocations

Undetectable translocations after multiplex base editing with a Pin-point system

A cleaner and safer approach to multiplex gene editing in iPSCs

Demonstrated simultaneous knock-in and multiple knockout in iPSCs

The Pin-point[™] platform enables one-step simultaneous knock-in and multiple knockout in iPSCs

32 [return to outline](#page-1-0)

Validated performance in HSPCs

Highly efficient base editing in HSPCs

High level of editing achieved with optimised conditions

High level of editing and purity achieved at the target site

High level of B2M phenotypic knock-out

Optimized application of the Pin-point[™] platform achieves high levels of editing in HSPCs with high purity of C to T conversion

Therapeutic editing of HSPCs with the Pin-point^{m} platform

The Pin-point base editing platform achieves therapeutic editing in HSPCs

TEVVI

36 [return to outline](#page-1-0)

Uniquely capable of complex engineering

A solution for complex engineering

One-step simultaneous knock-in and multiple knockout in T cells

Streamlined creation of CAR-T cells is enabled with the Pin-point[™] platform

The Pin-point platform is efficient and accurate for concurrent transgene insertion and multiplex base editing

revivit

No loss of efficiency in payload deliveries

The Pin-point[™] platform can deliver payloads equivalently to standard Cas9 or nCas9 knock-in strategies

40 [return to outline](#page-1-0)

Demonstrated simultaneous knock-in and multiple knockout in iPSCs

The Pin-point[™] platform enables one-step simultaneous knock-in and multiple knockout in iPSCs

[return to advantages](#page-6-0) [return to outline](#page-1-0)

41

Flexibility for target optimization

Choose components for locus-specific optimization

Increased potential to correct more pathogenic SNVs that are not reachable with existing published systems*

Example of optimization of the editing window by selecting the best guide RNA and deaminase pairs

Schematic depicts nCas9 configuration

LEJ

The modular Pin-point^{m} platform can be customized to combine optimal components for a wide range of base editing applications

*Lavrov et al. *BMC Med Genomics* 2020

43

A benefit of modularity of the Pin-point^{m} platform Demonstrated compatibility with numerous nucleases

rev)

The Pin-point platform enables utilization of a variety of RNA-guided nucleases, which can be further optimized for editing efficiency

The Pin-point^{-M} platform configured with Epic Bio's ultracompact Type V effector protein, dCasONYX

Ultra-compact engineered Cas12f variant dCasONYX is under 1.5 kb

Efficient editing with multiple deaminases when optimal gRNA scaffold is used

Robust targeting capability

Gene-gRNA design

Additional benefits of dCasONYX

- \checkmark Rapidly advancing to the clinic: Epic Bio's asset EPI-321 for the potential cure for FSHD
- \checkmark Superior off-target profile: described in Xin et al. Nature Communications¹
- \checkmark Fully deactivated nuclease: base editing without the risk of cutting the DNA
- \checkmark Low immunogenicity: no prior exposure to dCasONYX in 10 human T cell donors, while 80% of human population have prior exposure to Cas9²
- \checkmark Small size: Coding length less than 1.5 kb ideal for AAV packaging

A dCasONYX Pin-point configuration is one potential alternate to Cas9 for therapeutic applications

1 - doi: 10.1038/s41467-022-33346-1 2 - doi: 10.1038/s41591-018-0326-x

CENTA

[return to advantages](#page-6-0) [jump to base editing terminology](#page-8-0) [return to outline](#page-1-0)

 $\sqrt{ }$ 45

Synthetic reagents for arrayed screening applications

LEMAL

Pooled tiled base editing screening services

Modify up to every PAM-accessible cytidine in the gene of interest to gain unparalleled understanding of the genotype-phenotype relationship.

- Target splice sites, introduce premature stop codons, and introduce all possible missense mutations to recapitulate and then go way beyond CRISPRko and CRISPRi screens.
- Include loss of function and gain of function mutations in a single screen to elucidate possible mechanisms of drug sensitivity and resistance, or protein function.
- Utilize different deaminases to maximize the editing window and evaluate more of the genetic sequence.
- Data analysis to generate hit lists and potentially identify putative causative mutations.

Pooled tiled base editing screening services | example BRAFi resistance screen

NF1 knockout by targeting either the mRNA slice sites or introducing nonsense mutations are more likely to confer drug resistance

20

40

-4 -2 0 2 4 6 8 10

LFC² (IC80-DMSO)

Strong enrichment for edited genomes

resistance hits show no hotspot regions in the NF1 gene, agrees with clinical observations. Multiple guides introducing the same resistance conferring mutation are shown to demonstrate similar screen phenotypes.

48 [return to outline](#page-1-0)