revvity

Use of liquid scintillation counting for fast determination of ⁸⁹Sr and ⁹⁰Sr in milk.

Authors

David Tait Arnold Wiechen

Federal Dairy Research Centre, Inst. for Chemistry and Physics

Introduction

⁹⁰Sr ($t_{1/2}$ = 28,5 Jahre) is one of the radiologically most relevant radionuclides occuring in nuclear fallout.^{1,2)} Fresh fallout, however, also contains ⁸⁹Sr ($t_{1/2}$ = 50,5 Tage) at activities considerably greater than that of ⁹⁰Sr.³⁾ If an area is contaminated with fresh fallout, therefore, the activities of both of these nuclides must be determined in various media including foodstuffs. Milk is a particularly important medium for several reasons: The Sr isotopes migrate efficiently through the food chain "soil-plant-cow-milk" and accumulate especially in the bone cells of humans; milk is usually consumed as a fresh product; the level of contamination of the milk is an indication of the radiostrontium deposition over a wide area.

⁸⁹Sr and ⁹⁰Sr are not readily determined in the presence of each other because both are pure b-emitters. The end point b-energies are 1492 KeV and 546 KeV for ⁸⁹Sr and ⁹⁰Sr.⁴¹, respectively. While ⁸⁹Sr decays to an inactive product, ⁹⁰Sr decays to ⁹⁰Y, which is also a pure β -emitter with an endpoint energy of 2284 KeV.⁴¹ Since ⁹⁰Y has a t_{1/2} of 64,1 hours, this mother-daughter pair approaches secular equilibrium in about 14-17 days, i.e., after this time, an initially pure ⁹⁰Sr sample will contain an equal activity of ⁹⁰Y. This effect is used to estimate the ⁹⁰Sr content of mixtures of ⁸⁹Sr and ⁹⁰Sr: When secular equilibrium is attained, the ⁹⁰Y is separated, measured and the activity determined. The ⁸⁹Sr activity is then calculated by subtracting this ⁹⁰Y activity (= ⁹⁰Sr activity) from that of the initial ⁸⁹Sr/⁹⁰Sr mixture measured before significant amounts of ⁹⁰Y have formed.

Sr preparations suitable for such measurements must be free of the organic constituents of the milk; the inorganic cations Na⁺, K⁺, Mg²⁺, Ca²⁺ (present in g/l concentrations), Fe und Zn (in mg/l concentrations)⁵⁾; the naturally occurring radionuclides such as 40 K, 89 Rb, 14 C and 3 H; as well as other fallout nuclides that are transferred to milk, i. e., various isotopes of I, Te, Cs and ¹⁴⁰Ba with its daughter ¹⁴⁰La.⁶⁾ The traditional separation scheme of Harley, still the most frequently used method^{4,7}, fulfills all of these conditions. It involves drying and ashing the milk, a procedure requiring several days, then carrying out a lengthy series of precipitation reactions on a solution of the ash. There are many variations of this method in which the time consuming drying and ashing procedure is replaced by ion exchange techniques typically with Dowex-type strong cation exchange resins,⁸⁻¹⁰⁾ However, rather concentrated solutions of strong acids are required to elute the Sr. Elution is seldom guantitative. Barrata and Knowles¹¹⁾ have described an interesting approach in which milk is conserved by adding formaldehyde then stored until ⁹⁰Sr and ⁹⁰Y have attained secular equilibrium. Sodium citrate is added to bind Y as an anionic citratecomplex which is separated by treating the milk with an anion exchange resin. The Y is subsequently eluted and purified by extraction into tri-n-butyl-phosphate.

The same milk sample is further treated with cation exchange resin to bind ⁸⁹Sr and ⁹⁰Sr. These and other metal cations are eluted and the Sr purified by the precipitation reactions described in Harley's scheme. This includes the difficult separation of Sr²⁺ from Ca²⁺ and Ba²⁺. Ca²⁺ is removed by precipitating Sr(NO₃)₂ from fuming nitric acid, an unpleasant and hazardous procedure. Ba²⁺ is removed by precipitating it as BaCrO₄. This reaction, however, provides variable decontamination factors for Ba and frequently precipitates large amounts of Sr with the BaCrO₄.

The procedures mentioned above rely on achieving secular equilibrium between ⁹⁰Sr and ⁹⁰Y and require two b-measurements. Moreover, because large losses of strontium can occur, overall yields must be determined and the results corrected for these losses.

Clearly, a method is needed for separating strontium reproducibly and in large yield from liquid milk, thus avoiding the lengthy drying and ashing procedures as well as the yield determinations. Furthermore, a measurement technique is required that eliminates the need to carry out two measurements and is independent of the ⁹⁰Sr/⁹⁰Y equilibrium.

We have recently described a fast method for isolating strontium from raw milk.¹²⁾ The technique involves binding the divalent metal cations including Sr^{2+} to a chelating resin containing aminomethyl phosphonate groups. These divalent cations (e. g., Ca^{2+} , Sr^{2+} , Ba^{2+}) are quantitatively recovered by eluting the resin with dilute mineral acid. Ba^{2+} is removed by extracting it from an aqueous picrate solution into a solution of 21- crown-7 in chloroform. Sr^{2+} is isolated from Ca^{2+} by extracting the Sr^{2+} complex with dicyclohexyl-18-crown-6 into chloroform, a method similar to that described by Kimura et al.^{13,14)} After extracting back into the aqueous phase, Sr^{2+} can be precipitated as carbonate.

The present application note describes some improvements to this method along with its combination with a technique for measuring simultaneously ⁸⁹Sr, ⁹⁰Sr and ⁹⁰Y by liquid scintillation spectrometry. The studies^{15,16)} have shown the feasibility of such an approach. In this procedure, the SrCO, preparation containing all three isotopes is reacted with aqueous toluene sulphonic acid and dispersed in a liquid scintillation cocktail. The Revvity LAS TriCarb 2260XL low level scintillation counter is used to record the scintillation spectrum which is then resolved by a simple spectral stripping technique. We report here a test on five 2 liter samples of milk contaminated with known activities of ⁸⁹Sr and ⁹⁰Sr. Identical results can be obtained using the Revvity TriCarb model 3100TR with ultra low level option. This instrument belongs to the latest series of LSC Counters with Windows XP user interface.

Materials

All reagents except the following were obtained as analytical grade from Merck (Darmstadt, Germany). Standard solutions of ⁸⁹Sr and ⁹⁰Sr were provided by the Physikalisch-Technische-Bundesanstalt (Braunschweig, Germany), while the radioactive tracers ⁴⁵Ca, ⁸⁵Sr, ⁸⁵Y, ¹³³Ba and ¹³⁷Cs were purchased from Amersham-Buchler (Braunschweig, Germany). The scintillation cocktail Insta-Gel and the high performance glass scintillation vials were from Revvity LAS (Rodgau, Germany). For detailed information about scintillation cocktails please read application note 16.17) The crown ether 21-crown-7 was from Parish (Orem, Utah, USA), the blue-band filters were from Schleicher and Schüll (Dassel, Germany) and the chelating resin Chelite P was from Serva (Heidelberg, Germany). Raw milk was provided by the Federal Dairy Research Centre's Experimental Farm.

Methods

Contamination of the milk with ⁸⁹Sr and ⁹⁰Sr.

39.55 Bq ⁸⁹Sr and 8.34 Bq ⁹⁰Sr along with 1–2 μ g Sr²⁺ and Y³⁺ carriers as aqueous solutions of their chlorides were added per liter of milk. The milk was stirred and allowed to equilibrate at room temperature for at least one hour before proceeding with the analysis.

Isolation of strontium from the milk

The overview of the analysis in Figure 1 summarizes the main stages of the separation. The details are as follows: **Stage 1:** Each 2 liter sample was stirred with 300 g (450 ml wet volume) of Chelite P in the Na⁺ form for one hour at 70 °C. The milk was decanted off and discarded.

Stage 2: The resin was transferred to a 66 * 3 cm inner diameter glass column fitted at the outlet with a glass wool filter and stopcock. The resin was washed free of milk residue with about two liters of deionized water at 70 °C and an additional two liters at 95 °C. These washings were discarded.

Stage 3: Divalent cations were eluted from the column of Chelite P with about 550–600 ml of 2 M CCl at 70 °C at a flow rate of 10–20 ml/minute. This eluate was collected.

Stage 4: The pH of the eluate was adjusted to about 12 with aqueous carbaminate added and the solution was heated (uncovered) in a boiling water bath for 45-60 minutes to coagulate the precipitate. The solution was cooled and the precipitate was collected under mild suction on a filter paper (blue-band) in a Buchner-funnel. The precipitate and filter were washed free of Na⁺ and NH_4^+ ions with deionized water. The filtrate and the washings were discarded.

The precipitate was dissolved by reacting it with the minimum quantity of approximately 5–6 M HCl. The acid was added dropwise and the Buchner covered with a watchglass to prevent losses due to effervescence. The resulting solution was then washed with deionized water.

Stage 5: If necessary, the volume of the above solution was adjusted to less than 70 ml by evaporation, before neutralizing to pH 3–5 with LiOH solution. It is important that the total volume at this point does not exceed 100 ml. Ba (5 mg) and Sr (1 mg) carriers were added along with 1 mmol of picric acid. This solution was extracted in a separating funnel for two minutes with 100 ml 5*10⁻⁴ M 21–crown–7 in dichloromethane. The organic phase containing the barium was discarded.

Stage 6: To the aqueous phase remaining after Stage 5 were added 5 mg Sr carrier and 5 ml aqueous 2 M sodium acetate and acetic acid. This was now extracted for two minutes with 100 ml 2*10⁻³ M dicyclohexyl-18-crown-6 in chloroform. The chloroform phase was collected. 5 mg of Sr carrier were added to the aqueous phase and the extraction was repeated with fresh dicyclohexyl-18-crown-6 chloroform solution. A third extraction was similarly carried out on the aqueous phase enriched with 5 mg Sr carrier.

Stage 7: The combined chloroform phases from Stage 6 were extracted for two minutes with 100 ml of aqueous solution 1 M in HCl and NaCl and 0.1 M in NH_4Cl . The aqueous phase was collected. The chloroform phase was extracted with 50 ml of fresh aqueous HCl/NaCl/NH₄Cl containing 5 mg of Sr carrier. The aqueous phase was collected and combined with that from the first extraction. The total amount of Sr carrier present is now 20 mg.

Stage 8: The aqueous phase (i. e., 1 M in HCl and NaCl and 0.1 M in NH_4Cl) was transferred to a 250 ml centrifuge glass and pH adjusted to 12 by adding 10 M NaOH. 1–2 g of ammonium carbaminate were added and the solution heated in a boiling water bath for 30–45 minutes. The solution was briefly centrifuged before collecting the precipitate on a blue-band filter paper under suction. The precipitate and filter were washed with deionized water, then with a few ml of methanol.

Stage 9: The SrCO₃ (from Stage 8) and the filter were dried for 2-3 minutes in an oven at 80 °C. If the outer edge of the filter paper was contaminated with traces of picric acid, this was cut away before placing the SrCO₃ and filter into a glass scintillation vial. The carbonate was dissolved by reacting with 2.0 ml of an aqueous 25% W/V toluene sulphonic acid solution. 19.0 ml of Insta-Gel were added and the mixture shaken vigorously. The resulting emulsion, which is stable for several months, was equilibrated in darkness for at least 15 minutes at the working temperature of the scintillation counter before carrying out the measurement.

Stage 10: Details of the measurement and calculation of results are discussed below.

Figure 1: Outline of method for analysis of ⁸⁹Sr and ⁹⁰Sr.

Präparation of standards

⁸⁹Sr: 100-500 μl aliquots of an ⁸⁹Sr standard solution (200 Bq/ml) were added to 1.0 ml of 50% W/V aqueous toluene sulphonic acid containing 20 mg Sr carrier in a glass scintillation vial. The volume was made up to 2.0 ml with deionized water before adding 19.0 ml Insta-Gel.

°°Sr: 100-500 μl aliquots of ⁹⁰Sr standard solution (150 Bq/ml) were transferred by pipette to a separating funnel and diluted with 100 ml of a solution 0.1 M in both sodium acetate and acetic acid. 5 mg Sr carrier, 6 μg Y carrier and 1 mmol of picric acid were also added. This solution was extracted twice with dicyclohexyl-18- crown-6 chloroform solution as described in stage 6.

The aqueous phase was collected for extraction of ⁹⁰Y (see below), while the organic phase was treated as described in Stages 7, 8 and 9. An additional 5 mg Sr carrier were added prior to the carbonate precipitation (Stage 8) to bring the total Sr carrier present to 20 mg.

°°Y: 20 mg of Sr carrier were added to the aqueous phase remaining after extraction of the ⁹⁰Sr standard with dicyclohexyl-18-crown-6 as described above. SrCO₃ was precipitated as described under Stage 8. Under these conditions Y precipitates with SrCO₃. If more than 6 μg Y carriers are present, however, the SrCO₃ may have a slightly yellowish colour and have increased quench in the scintillation cocktail mixture (prepared as in Stage 9).

Background: 2 ml of 25% W/V aqueous toluene sulphonic acid containing 20 mg Sr carrier were dispersed in 19.0 mL Insta-Gel in a glass scintillation vial.

Measurement of scintillation spectra and calculation of results.

The scintillation spectra of standard and background cocktails and sample cocktails were measured with a TriCarb 2260XL Low-Level Liquid Scintillation Counter from Revvity LAS (former Packard Instrument Company). Figure 2 shows spectra of the cocktails containing ⁸⁹Sr, ⁹⁰Sr and ⁹⁰Y standards.

Abb. 2: Counting regions for ⁸⁹Sr, ⁹⁰Sr and ⁹⁰Y

The total spectral region of 2500 channels shown in Figure 2 can be divided into three sub-regions A, B and C according to the sources of the counts that can be registered there, as follows:

Region	Possible source of counts		
А	⁹⁰ Y, ⁸⁹ Sr, ⁹⁰ Sr		
В	⁹⁰ Y, ⁸⁹ Sr		
С	90Υ		

The spectrum of a sample containing all three nuclides will therefore contain counts distributed in regions A, B and C as shown above. Background counts will also be registered in all three regions.

To evaluate ⁸⁹Sr and ⁹⁰Sr in such a complex spectrum, information is needed from spectra of background and each of the nuclides measured alone. To allow ready comparison of these spectra, the counts in each region are divided by the measurement times of given count rates (R). The net count rate of ⁸⁹Sr in region B of the sample spectrum (⁸⁹Sr RB) is calculated from **Equation 1**:

⁸⁹Sr RB = Total RB-BG RB-⁹⁰Y RB (1)

where Total RB, BG RB and ⁹⁰Y RB are the total observed count rate, the background count rate, and the count rate attributable to ⁹⁰Y in region B of the sample spectrum.

Similarly, the net count rate of ⁹⁰Sr in region A of the sample spectrum (⁹⁰Sr RA) is given by **Equation 2**:

⁹⁰Sr RA = Total RA-BG RA-⁹⁰Y RA-⁸⁹Sr RA (2)

Values of Background RA and RB are readily obtained from measurements of the background cocktail. To calculate ⁹⁰Y RA and ⁹⁰Y RB a cocktail containing standard ⁹⁰Y only must

be measured. From the spectrum of such a preparation, proportionality constants (k) relating the count rate in region C with those in regions A and B can be obtained, as shown in **Equations 3 and 4:**

$$k_{1} = \frac{{}^{90}\text{Y Standard RA}}{{}^{90}\text{Y Standard RC}} \qquad (3)$$

$$k_{2} = \frac{{}^{90}\text{Y Standard RB}}{{}^{90}\text{Y Standard RC}} \qquad (4)$$

These constants can be assumed to be valid also for sample spectra (i. e., those containing all three nuclides). Therefore, ⁹⁰Y RA and ⁹⁰Y RB for a sample can now be calculated by combining these constants with the ⁹⁰Y RC observed for the sample as shown in **Equations 5 and 6**:

90
Y RA = $k_1^{*} {}^{90}$ Y RC (5)
 90 Y RA = $k_2^{*} {}^{90}$ Y RC (6)

All the components required to solve Equations 1 can thus be determined.

The net count rate of ⁸⁹Sr in region A of the sample can be derived by a procedure similar to that described in Equations 3-6: from a spectrum of a cocktail containing ⁸⁹Sr standard only, a proportionality constant is obtained (**Equation 7**):

$$k_{3} = \frac{{}^{89}\text{Sr Standard RA}}{{}^{89}\text{Sr Standard RB}}$$
 (7)

Combining k_3 with the value of the sample ⁸⁹Sr RB given by Equation 1 (shown in **Equation 8**):

89
Sr RA = k_3^{*89} Sr RB (8)

Equation 2 can now be readily solved for ⁹⁰Sr RA.

To convert the count rates of ⁸⁹Sr and ⁹⁰Sr given by Equations 1 and 2 into activities, the counting efficiencies of these nuclides in regions B and A, respectively, are required.

These efficiencies (E) are determined by measuring the net count rates in the regions of interest of cocktails containing known activities of ⁸⁹Sr and ⁹⁰Sr standards, than applying **Equations 9 and 10:**

⁸⁹Sr EB =
$$\frac{{}^{89}$$
Sr Standard RB 89 Sr Standard Aktivität (9)

90
Sr EA = $\frac{^{90}$ Sr Standard RA $\frac{}{^{90}$ Sr Standard Aktivität (10

where ⁸⁹Sr EB and ⁹⁰Sr EA are the efficiencies of counting ⁸⁹Sr and ⁹⁰Sr in den regions B and A, respectively. It is important here that the units of count rate and activity are the same, e. g., both in counts per second or in counts per minute.

The activities of ⁸⁹Sr and ⁹⁰Sr in the sample are therefore given by Equations 11 and 12:

⁸⁹Sr sample activity =
$$\frac{{}^{89}$$
Sr RB $}{{}^{89}$ Sr EB (11)
⁹⁰Sr sample activity = $\frac{{}^{90}$ Sr RA $}{{}^{90}$ Sr EA (12)

If the count rates have been calculated in counts per second, then the units of the activities equal Becquerel (Bq).

Region settings:

The results depend on the settings used for the regions A, B and C. Initial settings were chosen by inspection of spectra of cocktails containing the single nuclides.

To optimize these settings, a cocktail was prepared containing known activities of standard ⁸⁹Sr and ⁹⁰Sr in equilibrium with ⁹⁰Y (i. e., no ⁹⁰Sr/⁹⁰Y separation was carried out). This cocktail was measured and evaluated with various region settings according to the procedure described above. The single nuclide standards used for comparison were of the same activity as the mixed nuclide standard cocktail. The estimated activities of ⁸⁹Sr and ⁹⁰Sr in the mixed standard cocktail were 99.4% and 99.5% of those added, when the following settings were used:

Region	first channel	last channel_
А	20	310
В	310	1112
С	1112	1956

Count statistical error:

To calculate the relative uncertainty in the activities, the statistical errors (σ) associated with the counts measured in each region of the standards (⁸⁹Sr, ⁹⁰Sr and ⁹⁰Y), background and sample were considered. This error was converted to a relative error σ_{rel} for each measurement, e. g., for the counts in region of a given spectrum (shown in **Equations 13 and 14**):

$$\sigma = \sqrt{\text{Counts in region}}$$
(13)
$$\sigma \text{ rel} = \frac{\sigma}{\text{Counts in region}}$$
(14)

The relative uncertainties of the ⁸⁹Sr and ⁹⁰Sr activities are then derived by geometric addition of the srel values for all measurements involved in the calculation. For further details about counting statistics please refer to the literature.^{18, 19}

Measurement of decontamination factors.

These factors were determined for Ca, Y, Ba and Cs using the radiotracers ⁴⁵Ca, ⁸⁸Y, ¹³³Ba and ¹³⁷Cs. The measurement technique is described in reference 12.

Results

In all scintillation measurements, the transformed spectral index of the external standard (tSIE) developed by Packard (now Revvity LAS) was used as the quench indicating parameter. For more details about this and other quench parameters please read also application note 33.²⁰⁾ The value of this parameter (on a scale from 0-1000) varied in the range 343-360. This small variation can be minimized by ensuring that all samples are equilibrated long enough at the operating temperature of the instrument.

Figure 3 shows the effect of quench on the counting efficiencies of the three nuclides in the region A for A for 90 Sr, B for 89 Sr and C for 90 Y. To obtain these plots, the quench of scintillation cocktail containing known activities (about 200 Bq) of the single nuclides was varied either by passing N₂ (to displace O₂ and increase the tSIE quench factor), or by adding 10-50 µl of chloroform (to decrease the tSIE quench factor). The plots indicate that the small variation in quench observed in our sample measurements carried out under normal conditions do not influence the count rates significantly.

Figure 3: Effect of quench on efficiency of counting 89 Sr, 90 Sr and 90 Y in their respective counting regions

The decontamination factors for Ca, Y, Ba and Cs are listed in Table 1. These values indicate that Ca and radioisotopes of Ba and Cs are not likely to interfere with the analysis. The large decontamination factor for Y indicates that the correction for ⁹⁰Y contributions in regions A and B is very small for freshly prepared Sr samples.

Table 2 shows the results of all five analyses of the two liter milk samples contaminated with 39.55 + -0.99 Bq/l⁸⁹Sr and 8.34 + -0.17 Bq/l⁹⁰Sr. The averages of the values in the table are 34.7, standard deviation 1.4 Bq/l and 7.54, standard deviation 0.25 Bq/l for ⁸⁹Sr and ⁹⁰Sr respectively.

Table 1: Decontamination factors

Decontamination factors'					
Element	Factor				
Са	> 6,2 * 102				
Y	1,6 * 104				
Ва	7,9 * 101				
Cs	> 1,8 * 102				

* Activity in initial milk/activity in final SrCO₃ isolate at Stage 8

These values correspond to 87.7 +/- 3.5% of the ⁸⁹Sr and 90.4 +/- 3.0% of the ⁹⁰Sr added to the milk. Studies on the recovery of strontium from two liter milk samples containing ⁸⁹Sr as tracer indicated that 90.4% of the Sr is recovered. This is similar to the recoveries of 93.5 +/- 0.7%, found for 100 ml milk samples.¹²

Table. 2: Results of analyses of milk samples of two liter volume contaminated with 39.5 and 8.35 Bq of $^{89}{\rm Sr}$ and $^{90}{\rm Sr}$

	Bq/l found [*]		% Recovery§	
Sample	⁸⁹ Sr	⁹⁰ Sr	⁸⁹ Sr	⁹⁰ Sr
1	34,0	7,32	86,0	87,7
2	40,0	7,89	90,9	94,5
3	34,2	7,71	86,5	92,3
4	36,3	7,34	91,9	88,0
5	33,1	7,42	83,7	88,9

 * total relative statistical counting error (3 σ) for 89 Sr

are < 1.6% and for 90 Sr < 5.5% in all cases.

[§] (Bq nuclide found / Bq nuclide added) multiplied with 100

Conclusion

The results of the analyses agree well with the activities added to the milk samples; the strontium losses which occur in the isolation procedure correspond with the observed discrepancies between the added and measured activities. Small losses of strontium are observed at all stages of this procedure, particularly at the Ba/Sr separation (Stage 4). However, the good reproducibility would permit the use of a factor correcting for these losses.

Decontamination factors for I and Te were not determined because these species are presumably very strongly removed at Stages 1-3. The naturally occurring radionuclides ⁴⁰K and ⁸⁷Rb are assumed to behave similarly to Cs because all three are related alkali metals. These elements should be strongly removed at Stages 1-3 and 8. The bulk of the ¹⁴C and ³H also present in milk certainly remains in the milk during treatment with the chelating resin at Stage 1. They should not interfere with the results. Milk from the same area as the milk samples used here contains typically 0.10 Bq/l and in any event <0.20 Bq/l ⁹⁰Sr. Interference from this contamination is therefore negligible, too.

The effect on the detection limit for ⁹⁰Sr of ⁸⁹Sr/⁹⁰Sr ratio, ⁹⁰Y activity and measurement are under investigation. Preliminary studies indicate a detection limit of around 0.3-0.5 Bq at a ⁸⁹Sr/⁹⁰Sr ratio of 10:1 and with a measurement time of 12 hours. Further work is needed to ascertain whether the method is suitable for monitoring ⁹⁰Sr at current levels of environmental contamination.

The isolation technique requires 5-8 hours depending on the volume of the milk sample, so that results can be obtained within 24 hours. The findings described here imply that the method is suitable for monitoring milk for radiostrontium in areas contaminated with fresh fallout or with increased levels of ⁹⁰Sr.

Literature:

- United Nations Committee on the Effects of Atomic Radiation (UNSCEAR), Ionizing Radiation: Sources and Biological Effects. Report to the General Assembly, United Nations, New York (1982).
- 2. World Health Organization, Environmental Health Criteria 25, Selected Radionuclides, Geneva 1983.
- M. Eisenbud; Environmental Radioactivity, Second Edition, Academic Press, New York, Seite 345 (1973).
- G. Kanisch, H. Ruhle, R. Schelenz (eds.); Anleitungen für die Überwachung der Radioaktivität in der Umwelt, Bundesminister des Inneren, Karlsruhe (1984, Daten über β-Emitter erneuert 1987).
- 5. P. Walstra, R. Jenness; Dairy Chemistry and Physics, John Wiley and Sons, New York (1988).
- F. W. Lengeman, R. A. Wentworth, C. L. Comar; Lactation <u>IV</u>, 159-215 (1974), Academic Press, New York, London.
- H. L. Volchok, G. de Planque (eds.), Environmental Measurements Laboratory (EML) Procedures Manual, Report HASL-300, 26th edn., Environmental Procedures Laboratory, New York (1983).
- 8. F. E. Butler; Health Physics 8, 273-277 (1962).
- 9. J. H. C. Gillard-Baruh; Radiochim. Acta 20, 73-80 (1973).
- J. Oravec, J. Navarcik; *Radioanal. Nucl. Chem. Articles* **121**, 331-335 (1988).E. J. Barrata,
 F. E. Jr. Knowles; Journal of the AOAC **56**, 213-218 (1973).

- 11. D. Tait, A. Wiechen, W. Behrens; Milchwissenschaft **44**, 765-768 (1989).
- 12. T. Kimura, K. Iwashima, T. Ishimori, H. Hamaguchi; Chem. Lett. 563-564 (1977).
- T. Kimura, K. Iwashima, T. Ishimori, T. Hamada; J. Am. Chem. Soc. 51, 1113-1116 (1979).
- 14. H. V. Pittingsgrud, J. R. Stencel; *Health Physics* 23, 121-122 (1972).
- 15. P. Benzi, L. Operti, P. Volpe; J. Radioanal. Nucl. Chem. Letters **126**, 245-256 (1988).
- Revvity LAS (Germany) GmbH,
 63110 Rodgau-Jügesheim, LSC Application Note 16,
 Cocktails for Liquid Scintillation Counting,
 February 2006.
- Revvity LAS (Germany) GmbH,
 63110 Rodgau-Jügesheim, LSC Applikationsnote 25,
 Mögliche Fehler in Messungen und Grundlagen der Zählstatistik für die Szintillationsmessung, Juni 2005.
- R. H. W. Edler; Eine Einführung in die Szintillationstechnik zur Messung von Radionukliden, Bremen 2009 (in print).
- Revvity LAS (Germany) GmbH,
 63110 Rodgau-Jügesheim, LSC Applikationsnote 33,
 Die unterschiedlichen Quenchparameter in TriCarb Szintillationszählern von Revvity LAS, August 2005.

Revvity, Inc. 940 Winter Street Waltham, MA 02451 USA www.revvity.com