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Background
Cells constantly sense their environment and their response 
is a spatio-temporal summation of all signals. To maintain 
physiological stability, cells need to adjust to environmental 
changes, a process called homeostasis. One of the most 
important processes involved in maintaining homeostasis is 
autophagy, and its significance was recognized by the award 
of the Nobel Prize for Physiology in 2016 to Yoshinori Ohsumi 
for the discovery of its underlying mechanisms. Autophagy is 
the process of degrading cellular components such as lipids, 
large protein complexes or even whole organelles via the 
lysosomal route (Figure 1). Autophagy is used to clear the cell 
and recycle metabolic building blocks. It occurs constitutively  
but also in response to stress signals. Altered autophagy is 
found in various pathological conditions, for example, 
neurodegenerative diseases, cancer and viral and bacterial 
infections1. During tumor progression autophagy seems to 
change from an anti-tumorigenic to a pro-tumorigenic function. 
Although this is not fully understood, it is believed that 
autophagy can prevent tumor development by degrading,  
for example, damaged organelles and protein aggregates. 
However, especially at later stages of tumor development, 
enhanced autophagy may help to withstand metabolic and 
hypoxic stress1.
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In this study, we validate a phenotypic image and data 
analysis workflow provided by Revvity’s Harmony® high-
content imaging and analysis and High Content Profiler™ 
software using an autophagy assay as an application 
example. Alterations in autophagy can easily be visualized 
using the Opera Phenix™ high-content screening system 
and characterized by a set of advanced texture and STAR 
morphology features in the Harmony software. Secondary 
analysis in High Content Profiler then provides an automated 
workflow to create extensive data visualizations and cell 
classification to further the understanding of multiparametric 
phenotypic screening datasets.

Figure 1: Schematic drawing showing the main steps during 
autophagosome generation and degradation. The first step 
is the de novo formation of a double membrane structure 
(I) which then encloses the target or cargo (II) resulting in the 
formation of a double membrane enclosed vesicle, the so-called 
autophagosome (III). Autophagosomes then fuse with lysosomes, 
which subsequently leads to acidification and activation of 
hydrolases which degrade the inner membrane and the cargo  
(IV and V). The fusion of lysosomes can be blocked by chloroquine 
resulting in accumulation of autophagosomes. If normal degradation 
occurs, the final vesicle contains the degraded cargo from which 
the metabolic building blocks are recycled (V).

High content assay

HeLa, PANC-1 and HCT116 cells were cultured according to 
ATCC guidelines (ATCC, Manassas, Virginia). For imaging, 
2.5 x 103 HeLa and PANC-1 cells and 5 x 103 HCT 116 
cells were seeded into each well of a PhenoPlate 384-well 
plate (Revvity, Waltham, MA, Product # 6057300). After 
incubation overnight to allow attachment, cells were treated 
with chloroquine concentrations (chloroquine diphosphate, 
Tocris, Abingdon, UK) ranging from 1.6 µM - 100 µM for 
18 hours to enrich autophagosomes (see Figure 1, IV).

Autophagosomes were stained using an anti-human 
SQSTM-1 antibody (R&D Systems, Inc., Minneapolis, 
MN Cat# MAB8028) and a Northern Lights 557 conjugated 
secondary antibody (R&D Systems, Inc., Minneapolis, 
MN, Cat# NL007). Nuclei were counterstained using DAPI, 
and cytoplasm using Fluoro Nissl Green (FNG) diluted 1:1 in 
Northern Lights Guard mounting medium (R&D Systems, Inc., 
Minneapolis, MN Cat # NL996).

Images were acquired on the Opera Phenix system 
equipped with a 40x water immersion objective (NA 1.1) 
and analysed using Harmony software. Three channels 
representing nuclei, cytoplasm and autophagosomes 
were acquired simultaneously on a multicamera system 
in confocal mode. A z-stack of nine planes with 0.5 µm 
distance was acquired from six fields per well. As shown in 
Figure 2, the morphology and amount of autophagosomes in 
the untreated cells is quite different between the cell lines.  
PANC-1 cells appear to have more autophagosomes 
under control conditions than the other two cell lines. 
In addition PANC-1 cells are characterized by a higher 
variation between individual cells in the ground state. 
While autophagosomes accumulate near the nucleus in HCT 
116 cells, PANC-1 autophagosomes seem to be less compact.
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Figure 2: Chloroquine treatment leads to accumulation of autophagosomes in all three cell lines. Chloroquine treated HCT116 (left panel), 
HeLa (middle panel) and PANC-1 cells (right panel) were stained with SQSTM-1/NL557 (autophagosomes, orange), DAPI (nuclei, blue),  
FNG (cytoplasm, green) and imaged using a 40x water immersion objective. The number of autophagosomes in untreated control cells  
(upper panel) was very low and increased after chloroquine treatment (lower panel). The cell line morphology differs in the ground state  
and cells show individual phenotypic responses to the chloroquine treatment.

Image analysis

The multitude of phenotypic responses (Figure 2) prompted 
the use of our advanced STAR (Symmetry, Threshold 
compactness, Axial or Radial) morphology method and SER 
(Spots, Edges and Ridges) texture analysis. STAR includes 
a large set of properties and allows the quantification 
of morphological changes within a certain region. 
Here, “morphology” refers to the outer shape of objects 
as well as the distribution of intensities inside the objects. 
This allows the calculation of several hundred different 
properties, including among others, parameters describing 
the symmetric distribution of the staining, compactness 
parameters describing how densely packed the staining 
is and profiles which subdivide the cells into different 
zones such as inner side of plasma membrane (Profile 1/5), 
cytoplasmic (Profile 2/5), outside of the nuclear membrane 
(Profile 3/5), inner side of the nuclear membrane (Profile 4/5) 
and nucleoplasm (Profile 5/5) (see Figure 3 right column).

To allow image analysis, the images were first segmented into 
nuclei and cytoplasm using the Find Nuclei building block on 
the Hoechst channel and the Find Cytoplasm on the FNG 
channel. To detect autophagosomes the Find Spots building 
block was applied to the SQSTM-1 channel (Figure 3 left 
column). Then the Select Population building block was used 
to select spots/autophagosomes of certain intensity only.

After image segmentation, a set of basic intensity and 
morphology properties of the detected autophagosomes 
was calculated by adding the building blocks Calculate 
Intensity Properties and Calculate Morphology Properties 
(Figure 3 middle column). Furthermore, advanced morphology 
properties were calculated using the STAR morphology 
method (Figure 3 right column). Over 300 properties 
were calculated for each segmented cell to enable 
classification of two cellular phenotypes (classes): autophagy 
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positive and autophagy negative cells (Figure 4A and 4B). 
The PhenoLOGIC supervised machine learning module 
of Harmony was used, which identifies the properties 
responsible for the biggest variability in the data from the 
hundreds reported by the analysis sequence and combines 
them into a linear classifier to separate the two classes 
(up to six different classes can be defined)2.

The PhenoLOGIC machine learning module is available through 
the Select Population building block. For training, autophagy 
negative and autophagy positive cells were manually selected. 
Approximately 100 cells per phenotype are required for 
training to achieve sufficient sensitivity and specificity. 
This was done for each of the cell types individually using 
three separate Select Population building blocks.

Figure 3: Image analysis workflow from segmentation to STAR morphology analysis. Images were segmented into nuclei, cytoplasm and spots 
using appropriate “Find” building blocks (left panel). Using the building blocks “Calculate Intensity properties” and “Calculate Morphology 
properties”, basic spot properties were calculated. Using the STAR method, advanced morphology object parameters were determined. 
In addition to calculating the STAR properties on the original image, several image filters can be selected to pre-process the images before 
calculating the properties, e.g. sliding parabola or Texture SER. The whole set of STAR morphology properties is then calculated on the 
filtered images.



Phenotypic profiling of autophagy using the Opera Phenix high-content screening system.

5www.revvity.com

Figure 4: Identifying two cellular phenotypes using the interactive training mode of the PhenoLOGIC machine learning module. In “Training” mode, 
single cells are manually selected in positive control wells to teach the software to identify autophagy positive cells (panel A, green cells) and 
autophagy negative cells in negative control wells (panel B, red cells). After training with approximately 100 cells for each class, the classifier 
can be applied to the whole data set. The software combines the parameters responsible for the biggest variability in the data, whether two, 
three, four or more, to achieve accurate classification of autophagy positive and negative cells (panel C).

A CB

The quantitative image analysis confirmed the visually 
observed phenotypic changes. Chloroquine treatment led to 
the accumulation of autophagosomes in all three cell lines. 
The number and intensity of spots in treated cells increase 
with increasing chloroquine concentrations (Figure 5 A and B). 
Also the distribution of spots within the cells changes with 
increasing chloroquine concentrations indicated by the STAR 
parameter readouts (Figure 5 D - F). However, none of the 
calculated Z’ values for the different readouts is sufficiently 
high (> 0.4) to be reliable as a screening assay for all cell lines.

In contrast, the result from the linear classification shows that 
the newly generated readout, “Autophagy Positive” gives tight 
EC50 curves for all three cell lines and high Z’ values indicating 

that this is a very robust read out (Figure 6 A). The linear 
classifier for Hela cells uses the following spot intensity 
and STAR properties (ordered by relevance): Relative Spot 
Intensity, Spots in Cell Profile 2/5 SER-Edge, Cell Profile 2/5, 
Cell Profile 3/5 SER-Edge, Cell Profile 4/5 SP-Filter,  
Spots in Cell Profile 1/5 SP-Filter. For the other cell lines, 
similar relevant properties were extracted by PhenoLOGIC.

To test whether separate training procedures are required 
for the different cell lines, an additional training in which 
positive and negative cells were trained equally across all 
cell lines was performed (Figure 6 B). The results show that 
the EC50 values and Z’ values are very similar to the cell line-
specific training approach.
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Figure 5: Quantification of chloroquine induced effects on HCT116, HeLa and PANC-1 cells using classical readouts such as spot count and 
intensity (upper panels) as well as individual STAR morphology readouts (lower panels). Shown are EC50 curves for the different SQSTM1 
(autophagosome) readout parameters of both the “Spots” and “Cells” populations. The Z’ values indicate that none of them alone is sufficient 
to describe the changes in all three cell lines. n = 3 wells.

A B

Figure 6: Quantification of chloroquine induced effects on HCT116, HeLa and PANC-1 cells using STAR morphology readouts combined with 
PhenoLOGIC for classification. Shown are EC50 curves for the readout parameter autophagy positive cells (AP pos cells). The Z’ values indicate 
that this is a robust approach allowing the analysis of the cells either using separate training blocks for each cell line (A) or using one training 
block for all three cell types (B). For the latter, positive and negative cells were equally trained across the three cell lines. n = 3 wells.
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While Harmony and the PhenoLOGIC linear classifier are 
efficient tools for small scale experiments during assay 
development or for analysis of a small number of plates, 
Harmony is less well suited to handling large amounts 
of screening data. For this task our secondary analysis 
software High Content Profiler™ is built on TIBCO Spotfire®. 
High Content Profiler provides an automated way to handle 
large data sets. While it generates comprehensive data 
visualizations to better understand the screening data, 
it also greatly supports phenotypic screening approaches 
by processing hundreds of readouts and providing 
unsupervised and semi- supervised machine learning tools 
for cell classification.

Secondary data analysis in high content 
profiler

To demonstrate the power of this secondary analysis tool, 
the multiparametric autophagy dataset was imported into 
High Content Profiler (HCP). HCP automatically guides the 
user through a series of steps providing Normalization, 
Quality Control, Feature Selection and Hit Stratification. 
In this application, the cell-level and well-level data resulting 
from the image analysis completed in Harmony was 
analyzed. First quality control and data clean-up on the cell 
level data was performed, by utilizing trellised scatter plots 
and direct image rendering to identify and remove outliers 
(Figure 7). The standard deviation of triplicates within each 
cell line was significantly lower with cell-level data QC, 
compared to using aggregate well-level values that included 
all cell-level values. For this reason alone, capturing cell 
level data and performing QC before aggregating it to well-
level can greatly improve the accuracy of analysis.

Figure 7: An array of scatter plots enables the visualization of sub-populations, separation of treatment groups and identification of potential 
outliers, which can then be removed from the analysis. For instance, cells that did not express any autophagosome signal, similar to the 
unlabeled controls highlighted in red. Representative cell images are displayed for validation.

Analyzing the cell-level data allowed the exploration of the 
heterogeneity of responses across the three cell lines and 
the identification and selection of subpopulations or unique 

phenotypes. High Content Profiler provides box plot and 
histogram visualizations to help understand the level of 
heterogeneity and presence of subpopulations (Figure 8). 
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It is readily apparent that the dose response of chloroquine 
across the three cell lines varies, as well as the distribution 
of autophagosome positive cells. In this view, many of 
the calculated parameters from the image analysis were 
explored and a deeper examination of the parameters put 
forth by Harmony was performed.

Following cell-level QC and analysis, results were 
aggregated to well level for further analysis including 
machine learning for profiling and comparison to 
PhenoLOGIC results. High Content Profiler provides both 
semi-supervised and unsupervised machine learning 
techniques to discover clusters, trends, batches and outliers. 
Autophagosome classification from PhenoLOGIC was only 
used for comparison purposes and was not included in the 
HCP analysis. First Principal Component Analysis3 utilizing all 
calculated parameters was explored and dose-dependent 
effects of chloroquine across all three cell lines were clearly 
seen. More interestingly, the phenotypic response of all three 
cell lines clustered separately on PCA, even the untreated 

cells (Figure 9). The data can be inspected in another way 
utilizing an unsupervised machine learning technique called 
Self-Organizing Map algorithm4. It is a type of artificial neural 
network that clusters similar profiled data points together, 
in this case the aggregate phenotypic profile of each well 
of our assay. If two data points have extremely similar 
profiles, they will be clustered together in the same node. 
The Sammon Connection Networks plot is used to visualize 
the results of the SOM in a two-dimensional way. The farther 
away two nodes are, the more dissimilar to each other and 
the length of the line connecting two nodes also indicates 
how similar or dissimilar. It was found that the three cell 
lines had very different profiles from each other and the low, 
medium and high doses of chloroquine also gave distinct 
profiles (Figure 10). All wells designated as a ‘No antibody 
control’ clustered together in the center of the plot. 
This shows that the phenotypic response to chloroquine is 
indeed very different in the three cell lines, which was almost 
indistinguishable by eye. These results also coincide with the 
finding from the PCA in Figure 9.

Figure 8: Box plots and histograms allow the visualization of statistical measures of a chosen parameter as well as the distribution of that parameter. 
These visualizations also work well to indicate potential outliers which can then be confirmed with images and removed from the analysis. 
A and C: Box plots showing the distribution of data points across cell types and cell types with concentrations, respectively. The parameter 
of interest is the spot texture profile in the cell region just outside the nuclear membrane. The white line indicates the median value and the 
data points outside of the first and third quartiles are displayed as outliers. B: Histogram of the same parameter across cell lines show bimodal 
distribution. Potential outlier cell image is displayed for validation.
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Figure 9: Principal Component Analysis (PCA) visualization of all cell lines and concentrations of chloroquine. HCT116 seeded wells are represented 
by blue spheres, HeLa by green and PANC-1 by red. The concentrations of chloroquine are represented by the size of the spheres (larger spheres 
represent higher concentrations).

Figure 10: Self-Organizing Map and Sammon Connection Network clearly separate and cluster the three different cell lines as well as the different 
concentrations of chloroquine based on all the features extracted from image analysis. Each circle represents a node identified by SOM. The nodes 
are colored by the K-means clustering algorithm and the input was five clusters.
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Lastly, semi-supervised machine learning methods were 
used to perform Feature Selection and Hit Classification. 
The machine learning is semi-supervised because positive 
and negative control designations are inputs generated by the 
scientist. The algorithms chosen for this particular application 
were Ensemble Based Tree Classifier (Random Forest)5 for 
both feature selection and hit classification. While the 
PhenoLOGIC machine learning uses a linear algorithm, 
the Random Forest algorithm builds classification trees 
to look at the best combination of parameters to find the 
most relevant in describing the variance between two end 
points. While not an exact one-to-one match was made 
between the two methods, similar parameters rose to the 
top: Cell Profiles of the autophagosome staining as well as 
its Threshold Compactness. These are calculated from the 
STAR Morphology analysis building block. High Content 
Profiler then reduces the number of parameters to just 
the most relevant ones and performs hit stratification 
and classification, thus identifying which wells are 
‘autophagosome positive’ versus ‘autophagosome negative’. 
Dose response curves (DRCs) are automatically generated  
if the treatment is titrated, as in this example (Figure 11). 
DRCs can be viewed for individual parameters, as in 
Harmony, and the different EC50 values for each cell line 

can be seen. It can also be compared to a parameter 
called “Positivity Score” which is a multivariate, phenotypic 
score based on the relevant parameters drawn out by 
the semi-supervised machine learning. A curve based on 
this parameter will be more robust than that of any single 
parameter, similar to the autophagy positive readout 
generated by the linear classifier in Harmony.

The classification result obtained by semi-supervised 
classification in HCP (Figure 11) coincides very well with the 
result obtained by supervised machine learning in Harmony 
(Figure 6). The PANC-1 cell curve is distinct from the other 
two cell lines, while HCT 116 and HeLa cells show similar 
curves, although HeLa cells score slightly higher than  
HCT 116 cells when classified with HCP. As expected, 
the EC50 values for HeLa and HCT 166 cells based on the 
positivity score DRC are similar (HeLa = 7.9 µM and  
HCT 116 = 7.8 µM) and within the same range as EC50 values 
obtained by the Linear Classifier in Harmony (HeLa = 7.4 µM 
and HCT 116 = 6.8 µM), while no EC50 value can be inferred 
from the PANC-1 curve. Therefore it can be concluded 
that both Harmony and HCP are able to classify the two 
phenotypes autophagy positive and autophagy negative alike.

Figure 11: Dose response curves of all three cell lines in HCP. A multivariate score called “Positivity Score” is used as the measure on the y-axis. 
Representative images at points across the curve are displayed for validation.
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Conclusions

Image processing, statistical analysis of multiparametric 
data, and phenotypic profiling at both individual cell and 
aggregated well level are increasingly becoming a bottleneck 
in HCS analysis. In this study, we validate a phenotypic 
image and data analysis workflow provided by Revvity’s 
Harmony and High Content Profiler software using an 
autophagy assay as an example application.

Harmony is ideally suited for image analysis of phenotypic 
assays. With its advanced morphology readout toolkit 
including Texture and STAR analysis, Harmony is able to 
calculate hundreds of phenotypic readouts per cell.  
Machine learning techniques like the Linear Classifier then 
help to identify the most relevant readouts and allow 
readouts to be combined to better discriminate phenotypes 
whenever a single readout is not sufficient. Therefore it is 
easy for the biologist to analyze rich phenotypic data, by 
simply pointing and clicking on the cells in the image, telling 
the software which classes they belong to.

However, Harmony’s significant strength for phenotypic 
screening becomes apparent when combined with 
secondary analysis tools such as High Content Profiler. 
Harmony and High Content Profiler work seamlessly 
together and HCP provides a much more automated way 
of handling large data sets. It creates a set of standardized 
reports that help assess and improve the quality of the 
screening data as well as identifying the most relevant 
readouts and classifying the cells using unsupervised 
and semi-supervised machine learning algorithms. 

Finally, if the treatment is titrated, EC50 curves are 
automatically generated. All of these tools should ultimately 
facilitate the decision whether to proceed with a certain 
compound, particular gene or molecular target. 

For the autophagy assay described here, both supervised 
machine learning in Harmony and semi-supervised machine 
learning in HCP lead to similar EC50 curves (compare 
Figures 6 and 11), probably because of a relatively simple 
phenotypic change in all three cell lines. However, both 
supervised machine learning, and unsupervised classification 
tools such as principal component analysis or self-
organizing maps, are great tools within their own rights. 
While the supervised linear classifier is helpful whenever 
the phenotypes are predicted by the user, unsupervised 
classification might be better suited for applications with an 
unknown number of phenotypes. It might also detect subtle 
phenotypic changes that the user had not seen by visual 
inspection of the images. However, unsupervised methods 
might sometimes lead to classifications based on side effects 
such as slightly different cell densities or exposure settings 
during imaging, rather than the biological effect the user is 
seeking. In these cases biological knowledge can help steer 
the machine learning process.

Taken together, Harmony and High Content Profiler provide 
a breadth of tools to analyze, classify and interpret 
phenotypic screening data, which ultimately helps to make 
better decisions faster.
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