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Orthogonal 
validation of CRISPR-
Cas9 and siRNA 
generated 
phenotypes using 
cell painting.

Key features
• Phenotypic validation of cell cycle 

gene inhibition: CRISPR-Cas9 
knockout and siRNA knockdown  
with Dharmacon™ reagents

• Phenotypic clustering by 
dimensionality reduction using 
High Content Profiler App in  
Signals™ VitroVivo

• Identification of differences in 
phenotypic response kinetics 
and heterogeneity in phenotypic 
prevalence

Introduction
The cell cycle is a fundamental process that cells undergo 
to divide and replicate. It consists of a series of phases: 
G1 (growth), S (DNA synthesis), G2 (preparation for mitosis), 
and M (mitosis), where the cell divides into two daughter 
cells. Aurora kinase B (AURKB), Geminin (GMNN), and Polo-like 
kinase 1 (PLK1) are crucial proteins that regulate various stages 
of the cell cycle. AURKB is involved in chromosome alignment 
and segregation during mitosis. GMNN prevents DNA from being 
replicated more than once per cycle, thus maintaining genomic 
stability. PLK1 is essential for the initiation of mitosis, spindle 
assembly, and cytokinesis.

If AURKB is knocked out, it can lead to errors in chromosome 
segregation, resulting in aneuploidy, a condition where cells 
have an abnormal number of chromosomes, which is often 
associated with cancer. The absence of GMNN can cause 
uncontrolled DNA replication, leading to genomic instability 
and potential tumorigenesis. Knocking out PLK1 disrupts the 
regulation of mitosis, which can halt cell division and lead to 
apoptosis or programmed cell death.

Understanding the cell cycle and its regulatory mechanisms is 
crucial for advancements in medical research and treatment 
strategies. The intricate interplay of these proteins ensures the 
fidelity of cell division, which is essential for the growth and 
repair of tissues and the overall health of an organism.

To study these proteins’ function, they are often overexpressed 
or inhibited by either knocking out the gene using CRISPR-Cas9 
or by RNA interference where the mRNA is targeted by siRNA.
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Gene knockout

Gene knockdown

Gene knockout via CRISPR-Cas9 (Clustered regularly interspaced short 
palindromic repeats, CRISPR-associated protein 9) is a revolutionary gene-
editing technology that allows for permanent, directed changes to genomic 
DNA by introducing double-strand breaks in the DNA leading to mutations 
during repair. 

At its core, CRISPR-Cas9 relies on three components: 1. the Cas9 nuclease, 
2. CRISPR RNA (crRNA) comprised of targeting and repeat sequences, 
3. tracrRNA, which hybridizes to the crRNA through its anti-repeat sequence. 
Alternatively, the crRNA and tracrRNA can be linked together with a loop 
sequence for generation of chimeric single guide RNA (sgRNA). The CRISPR-
Cas9 complex recognizes DNA targets that are complementary to the crRNA 
sequence (called spacer) which sits next to the protospacer adjacent motif 
(PAM). Upon site-specific double-strand DNA cleavage, the cell can repair 
the break through Non-Homologous End Joining (NHEJ). Because NHEJ is 
imperfect, it results in small insertions and deletions (indels) that lead to 
functional gene knockout. 

To knockdown the mRNA, small interfering RNAs (siRNAs) have been proven 
as very effective tools. siRNAs are short, double-stranded RNA molecules 
transiently silencing gene expression post-transcriptionally by degrading 
mRNA. They work within the RNA interference (RNAi) pathway by binding 
to complementary messenger RNA (mRNA) sequences and promoting their 
degradation, thus preventing the translation of specific proteins. siRNAs are 
a powerful tool for studying gene function and have potential therapeutic 
applications in silencing harmful genes. 

Both CRISPR-Cas9 and siRNA technologies have opened new avenues for 
research offering precise and efficient ways to manipulate gene expression, 
with CRISPR-Cas9 being more efficient and specific, and siRNA less permanent 
and more suitable for transient studies.

Gene editing or 
modulation Cell painting

High-content 
imaging

Phenotypic 
clustering

Here, we show how either CRISPR-Cas9 or siRNAs can be 
used to target the cell cycle regulators AURKB, GMNN, and 
PLK1, and how the resulting phenotypes from the different 
methods can be compared using cell painting and high-
content imaging on the 

Opera Phenix™ Plus high-content screening system.  
Analysis was performed in Harmony™ high-content imaging 
and analysis software followed by secondary analysis using 
the High Content Profiler App in Signals™ VitroVivo.
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Results and Discussion

Phenotypic analysis using principal component analysis

In the siRNA-mediated knockdown experiment, 
wild-type U2OS cells were transfected with Dharmacon 
ON-TARGETplus™ siRNAs that specifically target AURKB, 
GMNN, and PLK1 (U2OS/siRNA). In the CRISPR-Cas9 
mediated knockout experiment, Cas9-stable U2OS cells 
were transfected with Dharmacon Edit-R™ synthetic single 
guide RNAs (sgRNAs) that target the respective cell cycle 
regulators (U2OS/Cas9). Ninety-six hours post transfection, 

cells were stained using the PhenoVue Cell Painting JUMP 
Kit followed by imaging and analysis on Opera Phenix Plus 
with the Harmony software1.

As anticipated, perturbing any of the targets not only led to 
changes in phenotype but also to a significant reduction in 
cell number, in accordance with the gene’s profound impact 
on cell cycle progression (Figure 1).

Figure 1: Example images showing phenotypic changes and reduction in cell number 96 hours after inhibition of three cell cycle regulators 
AURKB, GMNN or PLK1. Perturbed cells were compared to untreated (UT) and non-targeting  
controls (NTC). 

A: Example images of cell-painted cells acquired confocally on Opera Phenix with 20x water immersion lens. Phenotypes of perturbed cells 
strongly differ from controls e.g. in size, confluency, number of nuclei per cell, for both knockdown and knockout treatments. Each image 
shows one field of view in a maximum intensity projection of four planes, with a plane distance of 1 μm.

B: The total cell count from six wells across two plates decreases following the knockout or knockdown of genes/mRNA, as all three targets 
influence cell cycle progression. Moreover, siRNA treatment leads to a comparatively greater reduction in cell numbers for GMNN and PLK1.

U2OS/Cas9

Untreated Non-target control Aurora kinase B Geminin Polo-like kinase 1

U2OS/siRNA

n=6
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To reduce the dimensionality of the data and identify 
phenotypic clusters, we performed a principal component 
analysis (PCA) on the data (Figure 2). PCA is a statistical 
method that helps in identifying patterns and relationships 
within high-dimensional data while it retains distinguishing 
information. It accomplishes this by transforming the 
original data into a new set of uncorrelated variables, 
known as principal components. Each of these components 
captures a portion of the total variance in the data, 
with the first component accounting for the most variance. 
This technique is commonly used in exploratory data 
analysis, pattern recognition, and to enhance the efficiency 
of predictive models. 

Controls, AURKB and PLK1 knockouts/knockdowns 
form distinct clusters independent from the gene 
modulation method used, suggesting that there is ample 
variance within the data to differentiate the phenotypes. 
However, the GMNN phenotypes are more separated: 
The siRNA-mediated phenotype deviates from the 
CRISPR-Cas9-mediated phenotype along the first 
component, which accounts for the most variance.

Figure 2: Principal component analysis of (PCA) controls and cell cycle target knockouts/knockdowns results in the formation of distinct 
clusters. By applying PCA, we reduce the original large feature data set (5930 features) to a 2-dimensional coordinate system, effectively 
describing phenotypic variations and patterns. Untreated controls (UT), non-targeting controls (NTC) as well as PLK1 and AURKB exhibit close 
clusters of similar phenotypic patterns, for both modes of knockdown/out. However, GMNN forms separate clusters of the siRNA-mediated 
phenotype and the CRISPR-Cas9-mediated one, with the latter closely associated with the AURKB cloud.

Data points are shaped according to the mode of knockdown () / knockout (O) and originate from 2x3 wells from 2 independent plates. 



Orthogonal validation of CRISPR-Cas9 and siRNA generated phenotypes using cell painting.

5www.revvity.com

Gene editing versus modulation for GMNN inhibition

GMNN serves to prevent DNA re-duplication, and a 
deficiency in GMNN could lead to the formation of polyploid 
cells. As a measure of GMNN inhibition, we examined the 
DNA content and nuclear size in cells where GMNN was 
inhibited by CRISPR-Cas9 and siRNA and compared these to 
control cells (Figure 3). The knockdown of GMNN via siRNA 

resulted in the greatest Hoechst sum intensity in the nucleus 
and the largest increase in nuclear area, indicating a potent 
inhibition of GMNN. On the other hand, while the CRISPR-
mediated knockout also showed an increase in sum intensity 
and nuclear area compared to control cells, the effect was 
less pronounced than with siRNA.

Figure 3: Nucleus sum intensities and area after CRISPR knockout and siRNA knockdown: Revealing that GMNN inhibition by siRNA  
knockdown results in a higher DNA content as well as larger nuclear size compared to GMNN knockout and compared to the other treated 
cells and controls. 

A: Box plot analysis of DNA content (Hoechst sum intensity in the nucleus) from six wells across two independent plates. Regardless of the 
method used, DNA content increases upon inhibition of cell cycle targets. siRNA mediated knockdown of GMNN shows the strongest increase. 

B: Box plot analysis of nuclear size reveals its increase for all three cell cycle targets compared to controls, with the most pronounced effect 
observed in GMNN knockdown using siRNA. 
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Upon examining the images of nuclei from cells in which 
GMNN was inhibited (Figure 4 A), there are fewer cells 
with larger nuclei in the U2OS/Cas9 cells compared to the 
siRNA cells. This suggests that the observed differences 
in intensity and nuclear area do not uniformly apply to 

all cells. Instead, they originate from a heterogeneous 
population of larger and smaller nuclei. In the wells where 
GMNN was knocked down by siRNA, 44.4% of the cells are 
large (> 600 µm2), compared to only 18% in cells where 
GMNN was knocked out by CRISPR (Figure 4 B).
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Figure 4: Prevalence of larger nuclei in GMNN-targeted cells: The size of nuclei is heterogeneously distributed, with siRNA-treated cells 
showing a higher proportion of larger nuclei (> 600 µm²).

A: Images show varying ratios of larger (> 600 µm²) to smaller nuclei in cells where GMNN is knocked out or knocked down. The proportion 
of large nuclei is relatively higher in the siRNA-treated cell population.

B: Percentage of large nuclei in controls (non-targeting and untreated) vs. GMNN-targeted cells: 44.4% of nuclei are large (> 600 µm2) when 
GMNN is knocked down by siRNA, compared to only 18% in cells where GMNN was knocked out by CRISPR.

We re-evaluated the data from the GMNN knockout 
experiment, this time focusing on the cell painting properties 
of nuclei that exhibited either the large or small phenotype. 
When we amalgamated the findings from the large 
GMNN CRISPR knockouts with the results from all cells 
in other conditions, the PCA-shift between the siRNA and 
CRISPR-mediated GMNN inhibition was eliminated, leading to 
a unified clustering of the wells (Figure 5A top vs. 5B top). 

This prompted us to question whether the small cells are 
more akin to the control phenotype or represent a different 
form of the GMNN knockout/knockdown phenotype.

The PCA for the small GMNN-perturbed cells shows 
that they are clearly distinct from the control cells, with 
CRISPR and siRNA being closer together as well but not as 
separated from the other targets when compared to the 
large cells (Figure 5C top). This points to the fact that  
these cells are also GMNN-inhibited but display a  
different phenotype. 

Overall, this shows that both ways to inhibit GMNN led to 
the same phenotypic changes with siRNA having the faster 
kinetics for this distinct target.

GMNN/CRISPR

GMNN/siRNA
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Hierarchical clustering

An alternative approach to allocate phenotypes to clusters 
is hierarchical clustering. In this case, we employed 
the Ward’s method for the clustering of both columns 
(encompassing all 5930 features) and rows (with row 
numbers serving as identifiers for the different wells). 
Ward’s method is an agglomerative technique that aims to 
minimize the variance within the data. It initiates with each 
data point in an individual cluster, which are subsequently 
merged to reduce the variance. This method is particularly 
beneficial for quantitative variables. 

Figure 5A compares the result of this clustering with the 
PCA analysis from figure 2 for identical data sets. When 
considering all cells in the GMNN knockout/knockdown 
experiments (Figure 5A bottom), it is observed that the cells 

modified by CRISPR are distinct from those modified by 
siRNA. Interestingly, these CRISPR-modified cells cluster 
more closely with the AURKB knockout/knockdown cells. 
However, when we focus only on the “large”-nucleated cells 
in the GMNN knockout/knockdown experiments (Figure 5B 
bottom), these cells form a tight cluster. A similar pattern 
is observed when analyzing only the “small” sized nuclei 
(Figure 5C bottom). 

It is important to note that these “normal” cells with 
“smaller” nuclear phenotype are distinctly clustered away 
from the control wells. This suggests that they already 
exhibit a phenotype consistent with GMNN knockout/
knockdown.

Figure 5: The selection of a nuclear size-dependent subset of GMNN-phenotypes influences the clustering by PCA and changes the pattern 
of hierarchical clustering. GMNN-inhibited phenotypes generated by siRNA knockdown and CRISPR knockout cluster closer together when 
selecting the phenotype-subsets „small“ or „large” nuclei as shown by PCA (top) and similarity-patterns in hierarchical clustering using the 
Ward ‘s method (bottom). Identical data sets were used in both methods, excluding PLK1 in hierarchical clusters for improved readability. 

A Top: GMNN forms separate clusters for siRNA- vs. CRISPR-Cas9-mediated phenotypes when all sizes of nuclei are considered.  
AURKB and GMNN-CRISPR cells seem to have similar phenotypes. 

A Bottom: The same effect can be seen in the similarity-based pattern after hierarchical clustering (focusing on AURKB and GMNN for 
improved visualization). 

B Top: The PCA shift between the siRNA and CRISPR-mediated GMNN inhibition is eliminated, when for PCA only larger nuclei of the GMNN 
population are considered (but all sizes of nuclei for all other conditions) leading to a unified clustering of the GMNN wells.

B Bottom: GMNN-patterns uniformly cluster when cells with “large” nuclei in the GMNN knock-out/knock-down population are selected. 

C Top: When the PCA is performed for only small GMNN nuclei, CRISPR and siRNA clouds are closer together and not as separated from the 
other targets.

C Bottom: This effect is confirmed in the pattern created for the “small” sized GMNN-nuclei.

A: All GMNN nuclei B: Large GMNN nuclei C: Small GMNN nuclei

5930 columns 5930 columns 5930 columns
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Conclusions

In summary, both siRNA-mediated knockdown and 
CRISPR-Cas9-mediated knockout of AURKB, GMNN, 
and PLK1 in U2OS cells resulted in pronounced phenotypic 
changes and a reduction in cell number, underscoring 
the crucial roles of these genes in cell cycle progression. 
Disregulating these proteins can lead to profound 
implications, including developmental abnormalities, 
diseases, and various forms of cancer. Therefore, these 
proteins are not only pivotal in understanding cellular 
biology but also serve as potential targets for therapeutic 
interventions in diseases characterized by uncontrolled cell 
proliferation. 

To analyze changes resulting from gene modifications, 
we applied a Principal Component Analysis (PCA) to 5930 
phenotypic features extracted through cell painting analysis. 
This revealed distinct clusters for control and treated cells. 
Notably, the separation of GMNN phenotypes along the first 
principal component indicated a variance between siRNA 
and CRISPR-Cas9-mediated GMNN inhibition. 

Further examination of nuclear size and intensity in 
the GMNN population, where inhibition typically leads 

to polyploid cells, showed that siRNA-treated cells 
had a higher percentage of large nuclei compared to 
CRISPR-treated cells. This suggests variability in the kinetics 
of gene inhibition. Based on these findings, we re-ran 
the PCA and incorporated hierarchical clustering using 
the Ward ‘s method, considering nuclear size. Focusing 
separately on large and small nuclei revealed that small 
nuclei still exhibited GMNN inhibition but with a milder 
phenotype, while focusing on large nuclei led to a unified 
clustering of both GMNN populations. This could indicate 
that siRNA-mediated knockdown has a faster inhibitory 
effect on GMNN. 

In summary, using two or more orthogonal technologies 
that perturb gene function can strengthen the results and 
validate phenotypic data. Furthermore, this type of analysis 
shows that differences in the kinetics of target inhibition 
can result in different phenotypes when data is analyzed 
on well level only. This might be even more prominent 
when using small molecules which directly act on the target 
without the delay of either DNA editing or mRNA depletion 
and which additionally will have concentration-dependent 
off-target effects.

Materials and methods

Cells
U2OS, HTB-96, ATCC
U2OS cells stably expressing Cas9 (Revvity # HD Cas9-012)

Medium

MEM-RS medium (Cytiva # SH30564.01)
DMEM high glucose (Cytiva # SH30081.FS)
10% Fetal bovine serum (Cytiva # SH30071.03)
L-Glutamine (Gibco # 25030081)

CRISPR-Cas9 knockout

DharmaFECT 4 transfection reagent (Revvity # T-2004-03)

Dharmacon Edit-R™ synthetic single guide RNAs (sgRNAs) targeting cell cycle genes or controls 
(Revvity catalog #)

• Non-targeting negative control 2 (# U-009502-01-05)
• AURKB (# SQ-003326-01-0002)
• GMNN (# SQ-003270-01-0002)
• PLK1 (#SQ-003290-01-0002)

siRNA knockdown

Dharmacon ON-TARGETplus™ siRNAs targeting cell cycle genes or controls (Revvity #)

• ON-TARGETplus non-targeting control pool (# D-001810-10-05)
• AURKB (# L-003326-00-0005)
• GMNN (# L-003270-00-0005)
• PLK1 (# L-003290-00-0005)

Microplates PhenoPlate™ 96-well (Revvity # 6055300)

Cell painting kit PhenoVue Cell Painting JUMP Kit - 1 x 384 wells (Revvity # PING 21)

Image acquisition and
Analysis

Opera Phenix™ Plus high-content screening system (Revvity, # HH14001000) 
Harmony™ high-content imaging and analysis software (Revvity)

Secondary analysis High Content Profiler App in Signals™ VitroVivo (Revvity Signals)

Table 1: List of materials, instruments, and software.
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Cell culture, CRISPR-Cas9 knockout, 
siRNA knockdown

Knockout and knockdown: Adherent wild-type U2OS 
(osteosarcoma) cells were transduced with Edit-R lentiviral 
Cas9 nuclease expression vector to generate a cell line 
stably expressing Cas9 (CRISPR associated protein 9) under 
a hEF1α (human elongation factor - 1α) promoter (cell line 
HD Cas9-012 or lentiviral particles VCAS10126). 

Next, cells were plated at 750 cells/well in 100 µL growth 
medium into PhenoPlate-96-well microplates. On the day of 
transfection, for each well, 0.0125 µL of DharmaFECT 4 was 
added to 9.98 µL MEM-RS medium. Liposome complexes 
were allowed to form undisturbed for five minutes at 
room temperature, at which point the transfection mixture 
was added either to pooled sgRNAs or siRNA diluted in 
MEM-RS (sgRNA or siRNA final concentration of 25 nM/well). 
Transfection mixture was incubated undisturbed for an 
additional twenty minutes at room temperature before 
diluting with growth medium and adding to the cells. Cells 
were cultured for an additional 96 hours, at which point 
samples were used for T7EI endonuclease assay to confirm 
indel formation by CRISPR-Cas9 or used for RT-qPCR to 
confirm siRNA knockdown or used for the cell painting 
protocol (data not shown). 

Cell painting 

Cell painting was performed according to instructions 
provided with the PhenoVue Cell Painting JUMP kit. In 
brief, live cells were stained with 500 nM PhenoVue 641 
mitochondrial stain, followed by fixation with 4% PFA 
(paraformaldehyde). After washing, a mix of 0.1% Triton 
X-100, 1.5 µg/ml PhenoVue Fluor 555 – WGA, 5 µg/ml 
PhenoVue Fluor 488 - concanavalin A, 8.25 nM PhenoVue 
Fluor 568 – phalloidin, 1.62 µM PhenoVue Hoechst 33342 
nuclear stain, and 6 µM PhenoVue 512 nucleic acid 
stain was applied to the cells. Eight cell components 
(DNA, cytoplasmic RNA, nucleoli, actin, Golgi apparatus, 
plasma membrane, endoplasmic reticulum, and 
mitochondria) are stained with 6 dyes. Finally, plates were 
heat sealed and stored at 4°C until measurement.

Image acquisition 

6 cell painting stains were measured in 5 channels on the 
Opera Phenix Plus high-content screening system in confocal 
mode using a 20x water immersion objective. 9 fields of 
view were acquired per well, each with a 1 µm-spaced stack 
of 4 planes.

Feature extraction and secondary analysis

To extract phenotypic features (such as morphology, 
texture, intensity) from different cell regions, Maximum 
Intensity Projection images were analyzed in Harmony® 
software. The analysis involved segmenting the nuclei and 
cytoplasm, removing objects that touch the image borders, 
and extracting 5930 cellular features using the dedicated 
building block Calculate Cell Painting Properties in 
extensive setting (for more details, see 1). 

Downstream analysis of morphological profiles was done 
by importing feature data into the High Content Profiler 
app of Signals VitroVivo. A reduction of dimensionality was 
achieved with a principal component analysis (PCA) and 
hierarchical clustering.
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