A Diverse Set of Case Presentation Highlight the Power of Whole Genome Sequencing – What Next?

Ruby Liu, Fen Guo, Babi Nallamilli, Christin Collins, Lora Bean, Yang Wang, Naga Guruju, Madhuri Hegde

BACKGROUND

- The progression of high throughput sequencing technologies in the past decades has promoted whole genome sequencing (WGS) as the most comprehensive method to scrutinize the entire human genome to identify sequencing and structural variants in coding and non-coding regions of the genome.
- Emerging data have demonstrated that WGS has become the first test to be

Case 3

- 5-years old female
- Limb girdle weakness, positive Gower's sign, idiopathic gait dysfunction, femoral anteversion, hypermobility, proximal muscle weakness
- Neuromuscular panel is negative
- WGS screening revealed homozygous deletion of SMN1 exon 7, confirmed by MLPA

Estimated SMN1 Copy

Estimated SMN2 Copy WGS Screening

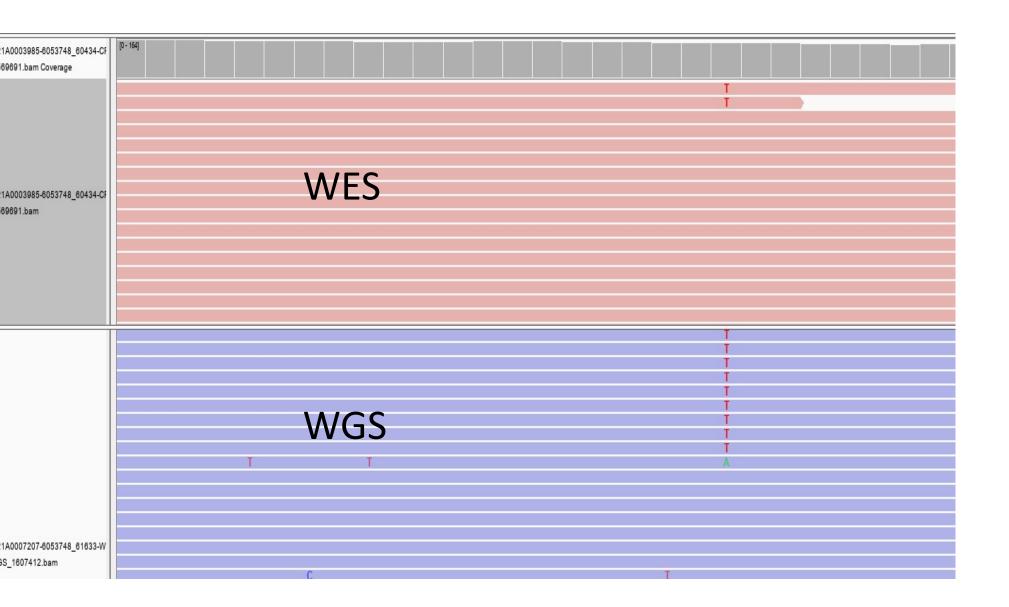
Centre of the second se

considered for critically sick children and WGS trio analysis helped clinical diagnosis. Additionally, WGS has been used as a screening tool that allows healthy individuals to learn their potential risks of developing medically actionable conditions as well as carrier status.

- WGS conducted in our laboratory showed a diagnostic yield ranging from 38% to 48% in adult and pediatric patients, respectively (ACMG 2021 abstract).
- Despite the strengths of WGS in clinical testing and research, the weakness of WGS including misalignment due to repetitive sequences, limited knowledge to fully understand variants of uncertain significance cannot be neglected.

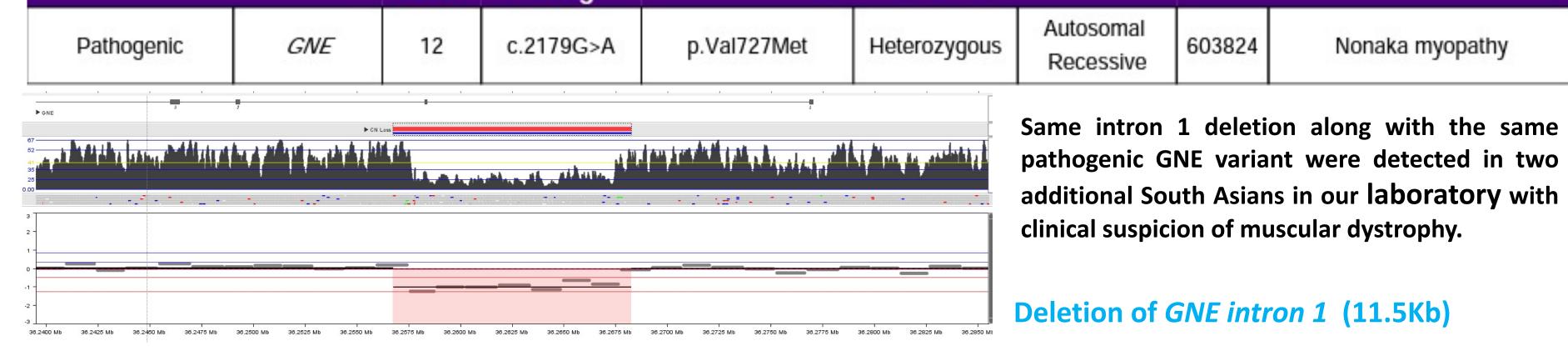
RESULTS

Case 1


- 20-year-old South Asian male
- Distal muscle weakness, myopathy, muscle atrophy, hyperCKemia, Gait difficulty
- Clinical suspicion of Nonaka myopathy

Classification Gene Exon/ DNA Intron Change Protein Change Zygosity Inheritance OMIM Associated Disease

	0.00				3.77						
D [nt] Gene-Exon	Chr.band	hg18 loc.	Height	Area	Ratio	Stdev	[REF]	Width	d[nt]	[Mut de	tails]
SMN1-7	05q13.2	05-070.283489	666	3445	5%	0	<<*	25	0.0	-	M
SMN1-8 SMN2-7	05q13.2 05q13.2	05-070.284168 05-069.408017	0 24908	0 102958	0% 1.74	0.08	<<** >>*	37	0.0	-	Со
1 SMN2-8	05q13.2	05-069.408800	23798	106080	1.81	0.07	>>*	45	0.0	-	CU


Case 4

- 6 months old female
- retinoblastoma and extra-ocular features
- RB1 negative
- WGS detected a pathogenic mtDNA variant that was missed by WES due to low coverage

Sequence variants:

Classification	Gene	Exon/ Intron	DNA Change	Protein Change	Zygosity	Inheritance	омім	Associated Disease
Pathogenic	MT-ND6	1	m.14568C>T	-	Heteroplasmic (de novo)	Mitochondrial	516006	Leber's hereditary optic neuropathy

Case 2

- 2-year-old female
- Cerebellar ataxia, cerebellar atrophy, leukodystrophy, con-rod dystrophy, vision loss, developmental delay and intellectual disability
- Negative SNV and CNV by WGS
- ATXN7 GCA repeat expansion of 48-66 through WGS screening. Confirmatory test is required.

Gene	Disorder	Locus Structure	Nucleotide Repeat	Reference Region	Supporting Reads Types	Locus Coverage	Zygosity	Normal Repeat Number	Full-Penetrance Pathogenic Repeat Number	Allele1/Allele2 Repeat	Confidence Interval	Allele1/Allele2 Category
ATXN7 (AD)	Spinocerebellar ataxia type 7	(GCA)*(GCC)+	GCA	3:63898360-63898390	SPANNING/INREPEAT	58.55	Het	<=27	>=36	10/58	10-10/48-66	Normal/Inconclusive

et a			Sc	SOL	10 - D	85
						_

Case 5

- Family with two similarly affected preteen sisters
- Spastic diplegia, diplegic cerebral palsy, developmental delay, intellectual disability, midbrain lesion, macrocephaly, encephalopathy.
- Multiple variants reported by WES and microarray and yet non-diagnostic
- Two variants in *trans* in the newly defined *HPDL* gene associated with neurological disorder detected by WGS quad analysis, in both sisters

Classification	Gene	Exon/ Intron	DNA Change	Protein Change	Zygosity	Inheritance	OMIM	Associated Disease
Uncertain Significance	HPDL	1	c.469T>C	p.Trp157Arg	Heterozygous (Paternal)	Autosomal Recessive	618994	Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities; Spastic paraplegia 83
Uncertain Significance	HPDL	1	c.816_817del	-	Heterozygous (Maternal)	Autosomal Recessive	618994	Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities; Spastic paraplegia 83

CONCLUSION

Albeit the advantages of WGS to capture multiple types of genetic variation, provide complete picture of the individual's genetic makeup, large data set and variant/gene of uncertain significance also leads to difficulties in interpreting the test results.
It necessitates to integrate genomic data with other levels of information including transcription, translation, epigenomics and metabolism, to delineate disease-causing mechanisms and genotype-phenotype correlation.

