

LANCE *Ultra* Insulin (Human) Detection Kit

Product number: TRF1204 C/M

Research Use Only. Not for use in diagnostic procedures.

Product Information

Application: This kit is designed for the quantitative determination of Insulin in media using a

homogeneous LANCE Ultra assay (no wash steps).

Sensitivity: Lower Detection Limit (LDL): 0.76 µU/mL

Lower Limit of Quantification (LLOQ): 3.1 µU/mL

EC₅₀: 0.1 mU/mL

Dynamic range: Kit designed to detect Insulin between: 0.76– 3,000 μU/mL (Figure 1).

Please note that 1.36 Units (U) of LANCE Insulin is equivalent of 1 International Unit (IU) of recombinant human Insulin (NIBSC/WHO Fifth International Standard

(code 83/500)).

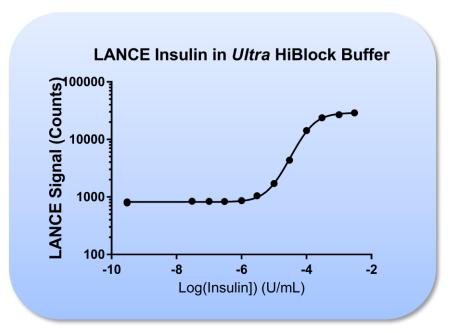


Figure 1. Typical sensitivity curves in *Ultra* HiBlock Buffer. The data was generated using a white OptiPlateTM -384 microplate and the EnVision Plate Reader equipped with TR-FRET option and a TRF laser. Performance on other plate readers may vary.

Storage: Store kit in the dark at +4°C. Store reconstituted analyte at -20°C.

Stability: This kit is stable for at least 12 months from the manufacturing date when stored in its

original packaging and the recommended storage conditions. Note: Once reconstituted,

the Insulin analyte is stable for at least 45 days when stored at -20°C.

Analyte of Interest

Insulin is synthesized as a proinsulin hormone of 110 aa by Beta-cells of the islets of Langherans in the pancreas. After removal of the precursor signal peptide, proinsulin is post-translationally cleaved into two chains (peptide A of 21 aa and peptide B of 30 aa) that are covalently linked via two disulfide bonds and secreted upon increased glucose concentration in blood. Blood concentration increases from around 50 pmol/L to 300-400 pmol/L 30 min after glucose uptake. Insulin is a key player in the control of both carbohydrate and lipid metabolism and has been implicated in various diseases including diabetes, heart disease and obesity.

Description of the LANCE Ultra Assay

LANCE® and LANCE® (Lanthanide chelate excite) *Ultra* are our TR-FRET (time-resolved fluorescence resonance energy transfer), homogeneous (no wash) technologies. One antibody of interest is labeled with a donor fluorophore (a LANCE Europium chelate) and the second molecule is labeled with an acceptor fluorophore [*ULight*™ dye]. Upon excitation at 320 or 340 nm, energy can be transferred from the donor Europium chelate to the acceptor fluorophore if sufficiently close for FRET (~10 nm). This results in the emission of light at 665 nm.

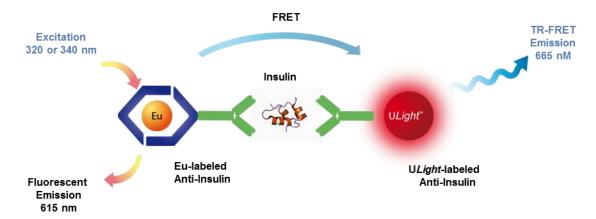


Figure 2. LANCE assay principle.

Precautions

- All blood components and biological materials should be handled as potentially hazardous.
- Some analytes are present in saliva. Take precautionary measures to avoid contamination of the reagent solutions.

Kit Content: Reagents and Materials

Kit components	TRF1204C (500 assay points***)	TRF1204M (10 000 assay points***)
LANCE <i>Ultra</i> Eu-labeled Anti-Insulin Antibody stored in TSA, 0.1% BSA	10 μL @ 500 nM (1 clear tube, yellow cap)	120 μL @ 500 nM (1 clear tube, orange cap)
LANCE <i>Ultra</i> U <i>Light</i> -labeled Anti-Insulin Antibody stored in TSA, 0.1% BSA	60 μL @ 500 nM (1 brown tube, blue cap)	1200 μL @ 500 nM (1 brown tube, green cap)
Insulin Analyte* lyophilized	0.01 U (1 tube, <u>clear</u> cap)	0.01 U (1 tube, <u>clear</u> cap)
Ultra HiBlock Buffer (5X) **	2 mL, 1 small bottle	100 mL, 1 large bottle

- * Reconstitute Insulin in 100 μL Milli-Q® grade H₂O. The reconstituted analyte should be used within 60 minutes or aliquoted into screw-capped polypropylene vials and stored at -20°C for further experiments. Avoid multiple freeze-thaw cycles. It has been demonstrated that reconstituted Insulin is stable for at least 45 days at -20°C. One vial contains an amount of Insulin sufficient for performing 10 standard curves. Additional vials can be ordered separately (cat # TRF1204S).
- ** Extra buffer can be ordered separately (cat # TRF1011C: 10 mL, cat # TRF1011F: 100 mL). 5X *Ultra* HiBlock Buffer may appear cloudy, especially after storage at cold temperature. Agitate and/or stir at room temperature to redissolve prior to dilution.
- *** The number of assay points is based on an assay volume of 20 μL in 384-well assay plates using the kit components at the recommended concentrations.

Sodium azide should **not** be added to the stock reagents. High concentrations of sodium azide (> 0.001 % final in the assay) might decrease the signal.

Specific additional required reagents and materials:

The following materials are recommended:

ltem	Suggested source	Catalog #
TopSeal-A PLUS Adhesive Sealing Film	Revvity Inc.	6050185
EnVision Multilabel Plate Reader equipped with TR-FRET option and a TRF laser	Revvity Inc.	-

Recommendations

- The volume indicated on each tube is guaranteed for single pipetting. Multiple pipetting of the reagents may reduce the theoretical amount left in the tube.
- Centrifuge all tubes (including lyophilized analyte) before use to improve recovery of content (2000g, 10-15 sec).
- Re-suspend all reagents by vortexing before use.
- Use Milli-Q[®] grade H₂O (18 MΩ•cm) to dilute Buffer and analyte.
- When diluting the standard or samples, <u>change tips</u> between each standard or sample dilution. When loading reagents in the assay microplate, <u>change tips</u> between each standard or sample addition and after each set of reagents.
- When reagents are added to the microplate, make sure the liquids are at the bottom of the well.
- Small volumes may be prone to evaporation. It is recommended to cover microplates with TopSeal-A Adhesive Sealing Films to reduce evaporation during incubation. LANCE Ultra TR-FRET assays cannot be read with the TopSeal-A Film attached. Please remove before reading.
- LANCE signal is detected using a VICTOR X, ViewLux, EnVision or EnSpire Multilabel Reader equipped with the TR-FRET. Use an excitation wavelength of 320 or 340 nm to excite the LANCE Europium chelate. We recommend you read this assay in dual emission mode, detecting both the emission from the Europium donor fluorophore at 615 nm, and the acceptor fluorophore (at 665 nm for ULight dye). The raw FRET signal at 665 nm can be used to process your data.
- Signal will vary with temperature and incubation time. For consistent results, identical incubation times and temperature should be used for each plate.
- The standard curves shown in this technical data sheet are provided for information only. A standard curve must be generated for each experiment. The standard curve should be performed in *Ultra* HiBlock Buffer

Assay Procedure

IMPORTANT: PLEASE READ THE RECOMMENDATIONS BELOW BEFORE USE

- The manual described below is an **example** for generating one standard curve in a 20 µL final assay volume (48 wells, triplicate determinations) and 452 samples. The manuals also include testing samples in 384 well plates. If different amounts of samples are tested, the volumes of all reagents must be adjusted accordingly, as shown in the table below. ***These calculations do not include excess reagents to account for losses during transfer of solutions or dead volumes.
- The standard dilution manual is provided for information only. As needed, the number of replicates or the range of concentrations covered can be modified.
- Use of four background points in triplicate (12 wells) is recommended when LDL/LLOQ is calculated. One background point in triplicate (3 wells) can be used when LDL/LLOQ is not calculated.

		Volume			
Format	# of data points	Final	Sample	Eu-Antibody/U <i>Light</i> - Antibody MIX	Plate recommendation
	250	40 μL	30 µL	10 μL	White OptiPlate-96 (cat # 6005290) White ½ AreaPlate-96 (cat # 6005560)
TRF1204C	500	20 μL	15 µL	5 μL	White ½ AreaPlate-96 (cat # 6005560) White OptiPlate-384 (cat # 6007290)
	1 250	8 µL	6 µL	2 μL	ProxiPlate™-384 Plus (cat # 6008280) White OptiPlate-384 (cat # 6007290)
	2 500	4 µL	3 µL	1 μL	White OptiPlate-1536 (cat # 6004290)
	10 000	20 μL	15 µL	5 μL	White ½ AreaPlate-96 (cat # 6005560) White OptiPlate-384 (cat # 6007290)
TRF1204M	25 000	8 µL	6 µL	2 μL	ProxiPlate-384 Plus (cat # 6008280) White OptiPlate-384 (cat # 6007290)
	50 000	4 µL	3 µL	1 μL	White OptiPlate-1536 (cat # 6004290)

General Manual (1-step manual): Dilute standards, samples, and assay components in 1X *Ultra* HiBlock Buffer.

Each manual described below is designed for $\underline{500 \text{ assay points}}$ including one standard curve (48 wells) and samples (452 wells).

Standard Preparation:

- 1) Preparation of 1X Ultra HiBlock Buffer:
 - a. Add 2 mL of 5X Ultra HiBlock Buffer to 8 mL H₂O.
- 2) Preparation of Insulin analyte standard dilutions:
 - a. Insulin analyte is provided at 0.01 U in lyophilized form. Reconstitute with 100 μ L H₂O to create a 0.1 U/mL solution. Prepare standard dilutions as follows (change tip between each standard dilution):

T. 1	Vol. of	Vol. of	[Insulin] in standard curve	
Tube Insulin (μL)		diluent (µL) *	(μU/mL in 15 μL)	(pg/mL in 15 µL)
А	10 µL of reconstituted Insulin	90	10 000	345 000
В	30 μL of tube A	70	3 000	103 000
С	30 μL of tube B	60	1 000	34 500
D	30 μL of tube C	70	300	10 300
E	30 μL of tube D	60	100	3 450
F	30 μL of tube E	70	30	1 030
G	30 μL of tube F	60	10	345
Н	30 μL of tube G	70	3	103
I	30 μL of tube H	60	1	35
J	30 μL of tube I	70	0.3	10
K	30 μL of tube J	60	0.1	3
L	30 μL of tube K	70	0.03	1
M ** (background)	0	100	0	0
N ** (background)	0	100	0	0
O ** (background)	0	100	0	0
P ** (background)	0	100	0	0

- * At low concentrations of analyte, a significant amount of analyte can bind to the vial. Therefore, load the analyte standard dilutions in the assay microplate within 60 minutes of preparation.
- ** Four background points in triplicate (12 wells) are used when LDL is calculated. If LDL does not need to be calculated, one background point in triplicate can be used (3 wells).
- 3) <u>Preparation of 4X MIX Eu-labeled anti-Insulin Antibody (1.2 nM) + ULight labeled anti-Insulin Antibody (12 nM):</u>
 - a. Add <u>6 μL</u> of 500 nM Eu-labeled anti-Insulin Antibody and <u>60 μL</u> of 500 nM U*Light*-labeled anti-Insulin Antibody to 2434 μL of *Ultra* HiBlock Buffer.
 - b. Prepare just before use.
- 4) In a white Optiplate (384 wells):

Add 15 μL of each analyte standard dilution or 15 μL of sample

Add 5 μL of a 4X MIX Eu-labeled anti-Insulin Antibody (0.3 nM final) + U*Light* labeled anti-Insulin Antibody (3 nM final)

Incubate 18 hours at 23°C

Read using LANCE TRF Laser (in TR-Fret mode)

Important: LANCE signal is detected using an EnVision Multilabel Reader equipped with the TR-FRET. Use an excitation wavelength of 320 or 340 nm to excite the LANCE Europium chelate. We recommend you read this assay in dual emission mode, detecting both the emission from the Europium donor fluorophore at 615 nm, and the acceptor fluorophore (at 665 nm for U*Light* dye).

Data Analysis

- Calculate the average count value for the background wells.
- Generate a standard curve by plotting the LANCE counts versus the concentration of analyte. A log scale can be used for either or both axes. No additional data transformation is required.
- Analyze data according to a nonlinear regression using the 4-parameter logistic equation (sigmoidal dose-response curve with variable slope) and a 1/Y² data weighting (the values at maximal concentrations of analyte after the hook point should be removed for correct analysis).
- The LDL is calculated by interpolating the average background counts (12 wells without analyte) + 2 x standard deviation value (average background counts + (2xSD)) on the standard curve.
- The LLOQ as measured here is calculated by interpolating the average background counts (12 wells without analyte) + 10 x standard deviation value (average background counts + (10xSD)) on the standard curve. Alternatively, the true LLOQ can be determined by spiking known concentrations of analyte in the matrix and measuring the percent recovery, and then determining the minimal amount of spiked analyte that can be quantified within a given limit (usually +/- 20% or 30% of the real concentration).
- Read from the standard curve the concentration of analyte contained in the samples.
- If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

Assay Performance Characteristics

LANCE Ultra assay performance described below was determined using the 1 step manual.

Assay Sensitivity

The LDL and LLOQ were calculated as described above. The values correspond to the lowest concentration of analyte that can be detected in a volume of 15 µL using the recommended assay conditions.

LDL (µU/mL)	LLOQ (µU/mL)	Buffer	# of experiments
0.8	2.8	<i>Ultra</i> HiBlock	9
1.2	3.2	DMEM	6
4.2	10.1	RPMI	6

Assay Precision:

The following assay precision data were calculated from the three independent assays using two different kit lots. In each lot, the analytes were prepared in *Ultra* HiBlock Buffer. Each assay consisted of one standard curve comprising 12 data points in triplicate and 12 background wells containing no analyte. The assays were performed in a 384-well format using *Ultra* HiBlock Buffer.

Intra-assay precision:

The intra-assay precision was determined using 3 independent experiments for a total of 16 independent determinations in triplicate. CV% were calculated for each individual experiment then averaged. Shown is the average intra-experimental CV%.

Insulin (CV%)	Buffer
6	<i>Ultra</i> HiBlock
7	DMEM
8	RPMI

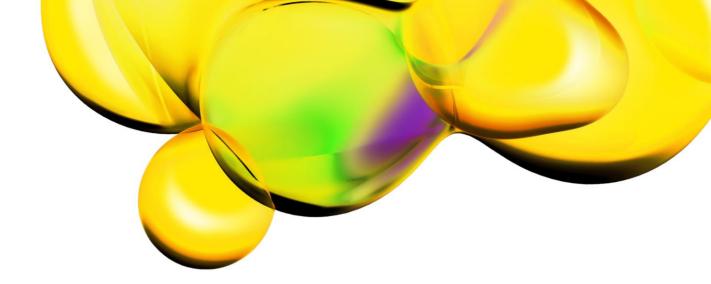
Inter-assay precision:

The inter-assay precision was determined using the data across 3 independent experiments with 16 measurements in triplicate. CV% was calculated by comparing the same measurement in each experiment. The CV% for all 16 measurements were then averaged. Shown is the inter-experimental CV%.

Insulin (CV%)	Buffer
11	<i>Ultra</i> HiBlock
9	DMEM
10	RPMI

Spike Recovery:

In four experiments, three known concentrations of Insulin were spiked into 3 separate media and performed triplicate. The spiked samples were referenced to the Insulin analyte curve produced in the corresponding media.


Spiked	% Recovery			
Insulin (µU/mL)	Ultra HiBlock Buffer	DMEM + 10% FBS	RPMI + 10% FBS	
3	98	98	111	
1	98	96	89	
0.3	109	103	104	

Troubleshooting Guide

You will find detailed recommendations for common situations you might encounter with your LANCE *Ultra* Assay kit at:

www.revvity.com

RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

The information provided in this document is for reference purposes only and may not be all-inclusive. Revvity, Inc., its subsidiaries, and/or affiliates (collectively, "Revvity") do not assume liability for the accuracy or completeness of the information contained herein. Users should exercise caution when handling materials as they may present unknown hazards. Revvity shall not be liable for any damages or losses resulting from handling or contact with the product, as Revvity cannot control actual methods, volumes, or conditions of use. Users are responsible for ensuring the product's suitability for their specific application. REVVITY EXPRESSLY DISCLAIMS ALL WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, REGARDLESS OF WHETHER ORAL OR WRITTEN, EXPRESS OR IMPLIED, ALLEGEDLY ARISING FROM ANY USAGE OF ANY TRADE OR ANY COURSE OF DEALING, IN CONNECTION WITH THE USE OF INFORMATION CONTAINED HEREIN OR THE PRODUCT ITSELF

www.revvity.com

